2.2.250 Problems 24901 to 25000

Table 2.513: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

24901

\begin{align*} x^{4} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }+x^{3}\right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.606

24902

\begin{align*} y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

0.871

24903

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2}&=0 \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.741

24904

\begin{align*} y^{\prime }-y^{\prime \prime } x +{y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.262

24905

\begin{align*} {y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+y^{\prime \prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.502

24906

\begin{align*} 3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.062

24907

\begin{align*} 4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.790

24908

\begin{align*} y^{\prime }&=2 y \\ \end{align*}

[_quadrature]

0.491

24909

\begin{align*} t y^{\prime }&=y \\ \end{align*}

[_separable]

1.353

24910

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.079

24911

\begin{align*} y^{\prime }&=2 y \left (y-1\right ) \\ \end{align*}

[_quadrature]

0.604

24912

\begin{align*} 2 y y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.500

24913

\begin{align*} 2 y y^{\prime }&=y^{2}+t -1 \\ \end{align*}

[_rational, _Bernoulli]

1.473

24914

\begin{align*} y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.996

24915

\begin{align*} y^{\prime }&=3 y+12 \\ \end{align*}

[_quadrature]

0.357

24916

\begin{align*} y^{\prime }&=-y+3 t \\ \end{align*}

[[_linear, ‘class A‘]]

0.656

24917

\begin{align*} y^{\prime }&=y^{2}-y \\ \end{align*}

[_quadrature]

0.507

24918

\begin{align*} y^{\prime }&=2 t y \\ \end{align*}

[_separable]

1.366

24919

\begin{align*} y^{\prime }&=-{\mathrm e}^{y}-1 \\ \end{align*}

[_quadrature]

0.764

24920

\begin{align*} \left (t +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[_separable]

1.190

24921

\begin{align*} y^{\prime }&=y^{2} \\ \end{align*}

[_quadrature]

0.695

24922

\begin{align*} y^{\prime }&=t +3 \\ \end{align*}

[_quadrature]

0.161

24923

\begin{align*} y^{\prime }&={\mathrm e}^{2 t}-1 \\ \end{align*}

[_quadrature]

0.180

24924

\begin{align*} y^{\prime }&=t \,{\mathrm e}^{-t} \\ \end{align*}

[_quadrature]

0.194

24925

\begin{align*} y^{\prime }&=\frac {t +1}{t} \\ \end{align*}

[_quadrature]

0.174

24926

\begin{align*} y^{\prime \prime }&=2 t +1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.677

24927

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.746

24928

\begin{align*} y^{\prime }&=3 y+12 \\ y \left (0\right ) &= -2 \\ \end{align*}

[_quadrature]

0.514

24929

\begin{align*} y^{\prime }&=-y+3 t \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.747

24930

\begin{align*} y^{\prime }&=y^{2}-y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

0.739

24931

\begin{align*} \left (t +1\right ) y^{\prime }+y&=0 \\ y \left (1\right ) &= -9 \\ \end{align*}

[_separable]

1.477

24932

\begin{align*} y^{\prime }&={\mathrm e}^{2 t}-1 \\ y \left (0\right ) &= 4 \\ \end{align*}

[_quadrature]

0.285

24933

\begin{align*} y^{\prime }&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_quadrature]

0.322

24934

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.062

24935

\begin{align*} y^{\prime }&=t \\ \end{align*}

[_quadrature]

0.279

24936

\begin{align*} y^{\prime }&=y^{2} \\ \end{align*}

[_quadrature]

0.620

24937

\begin{align*} y^{\prime }&=y \left (t +y\right ) \\ \end{align*}

[_Bernoulli]

1.135

24938

\begin{align*} y^{\prime }&=1-y^{2} \\ \end{align*}

[_quadrature]

1.183

24939

\begin{align*} y^{\prime }&=y-t \\ \end{align*}

[[_linear, ‘class A‘]]

0.617

24940

\begin{align*} y^{\prime }&=-t y \\ \end{align*}

[_separable]

1.334

24941

\begin{align*} y^{\prime }&=y-t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.155

24942

\begin{align*} y^{\prime }&=t y^{2} \\ \end{align*}

[_separable]

2.211

24943

\begin{align*} y^{\prime }&=\frac {t y}{1+y} \\ \end{align*}

[_separable]

1.604

24944

\begin{align*} y^{\prime }&=y^{2} \\ \end{align*}

[_quadrature]

0.665

24945

\begin{align*} y^{\prime }&=y \left (t +y\right ) \\ \end{align*}

[_Bernoulli]

1.070

24946

\begin{align*} y^{\prime }&=y-t \\ \end{align*}

[[_linear, ‘class A‘]]

0.599

24947

\begin{align*} y^{\prime }&=1-y^{2} \\ \end{align*}

[_quadrature]

0.451

24948

\begin{align*} y^{\prime }&=2 y \left (5-y\right ) \\ \end{align*}

[_quadrature]

0.580

24949

\begin{align*} y y^{\prime }&=1-y \\ \end{align*}

[_quadrature]

0.301

24950

\begin{align*} t^{2} y^{\prime }&=1-2 t y \\ \end{align*}

[_linear]

0.782

24951

\begin{align*} \frac {y^{\prime }}{y}&=y-t \\ \end{align*}

[_Bernoulli]

1.051

24952

\begin{align*} t y^{\prime }&=y-2 t y \\ \end{align*}

[_separable]

0.806

24953

\begin{align*} y^{\prime }&=t y^{2}-y^{2}+t -1 \\ \end{align*}

[_separable]

2.387

24954

\begin{align*} \left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

3.356

24955

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ \end{align*}

[[_Riccati, _special]]

37.593

24956

\begin{align*} {\mathrm e}^{t} y^{\prime }&=y^{3}-y \\ \end{align*}

[_separable]

3.723

24957

\begin{align*} y y^{\prime }&=t \\ y \left (2\right ) &= -1 \\ \end{align*}

[_separable]

3.358

24958

\begin{align*} 1-y^{2}-t y y^{\prime }&=0 \\ \end{align*}

[_separable]

3.992

24959

\begin{align*} y^{3} y^{\prime }&=t \\ \end{align*}

[_separable]

1.874

24960

\begin{align*} y^{4} y^{\prime }&=t +2 \\ \end{align*}

[_separable]

1.559

24961

\begin{align*} y^{\prime }&=t y^{2} \\ \end{align*}

[_separable]

2.098

24962

\begin{align*} \tan \left (t \right ) y+y^{\prime }&=\tan \left (t \right ) \\ \end{align*}

[_separable]

1.711

24963

\begin{align*} y^{\prime }&=t^{m} y^{n} \\ \end{align*}

[_separable]

3.385

24964

\begin{align*} y^{\prime }&=4 y-y^{2} \\ \end{align*}

[_quadrature]

0.658

24965

\begin{align*} y y^{\prime }&=1+y^{2} \\ \end{align*}

[_quadrature]

0.580

24966

\begin{align*} y^{\prime }&=1+y^{2} \\ \end{align*}

[_quadrature]

1.443

24967

\begin{align*} t y y^{\prime }+t^{2}+1&=0 \\ \end{align*}

[_separable]

1.418

24968

\begin{align*} y+1+\left (y-1\right ) \left (t^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.696

24969

\begin{align*} 2 y y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[_separable]

1.285

24970

\begin{align*} \left (1-t \right ) y^{\prime }&=y^{2} \\ \end{align*}

[_separable]

1.507

24971

\begin{align*} -y+y^{\prime }&=y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.050

24972

\begin{align*} y^{\prime }&=4 t y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

2.992

24973

\begin{align*} y^{\prime }&=\frac {y x +2 y}{x} \\ y \left (1\right ) &= {\mathrm e} \\ \end{align*}

[_separable]

1.320

24974

\begin{align*} 2 t y+y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ \end{align*}

[_separable]

1.642

24975

\begin{align*} y^{\prime }&=\frac {\cot \left (y\right )}{t} \\ y \left (1\right ) &= \frac {\pi }{4} \\ \end{align*}

[_separable]

3.584

24976

\begin{align*} \frac {\left (u^{2}+1\right ) y^{\prime }}{y}&=u \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

1.813

24977

\begin{align*} t y-\left (t +2\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

1.727

24978

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{t} \\ y \left (1\right ) &= \sqrt {3} \\ \end{align*}

[_separable]

2.496

24979

\begin{align*} 3 y+y^{\prime }&={\mathrm e}^{t} \\ y \left (0\right ) &= -2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.103

24980

\begin{align*} \cos \left (t \right ) y^{\prime }+\sin \left (t \right ) y&=1 \\ y \left (0\right ) &= 5 \\ \end{align*}

[_linear]

2.076

24981

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{2 t} \\ y \left (0\right ) &= 4 \\ \end{align*}

[[_linear, ‘class A‘]]

1.092

24982

\begin{align*} t y^{\prime }+y&={\mathrm e}^{t} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

1.510

24983

\begin{align*} t y^{\prime }+m y&=t \ln \left (t \right ) \\ \end{align*}

[_linear]

1.961

24984

\begin{align*} y^{\prime }&=-\frac {y}{t}+\cos \left (t^{2}\right ) \\ \end{align*}

[_linear]

1.575

24985

\begin{align*} y^{\prime }+2 y&=\sin \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.444

24986

\begin{align*} y^{\prime }-3 y&=25 \cos \left (4 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.560

24987

\begin{align*} t \left (t +1\right ) y^{\prime }&=2+y \\ \end{align*}

[_separable]

1.599

24988

\begin{align*} z^{\prime }&=2 t \left (z-t^{2}\right ) \\ \end{align*}

[_linear]

1.715

24989

\begin{align*} y^{\prime }+a y&=b \\ \end{align*}

[_quadrature]

0.440

24990

\begin{align*} y \cos \left (t \right )+y^{\prime }&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.116

24991

\begin{align*} y^{\prime }-\frac {2 y}{t +1}&=\left (t +1\right )^{2} \\ \end{align*}

[_linear]

1.914

24992

\begin{align*} y^{\prime }-\frac {2 y}{t}&=\frac {t +1}{t} \\ y \left (1\right ) &= -3 \\ \end{align*}

[_linear]

1.910

24993

\begin{align*} y^{\prime }+a y&={\mathrm e}^{-a t} \\ \end{align*}

[[_linear, ‘class A‘]]

0.818

24994

\begin{align*} y^{\prime }+a y&={\mathrm e}^{b t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.150

24995

\begin{align*} y^{\prime }+a y&=t^{n} {\mathrm e}^{-a t} \\ \end{align*}

[[_linear, ‘class A‘]]

3.433

24996

\begin{align*} y^{\prime }&=\tan \left (t \right ) y+\sec \left (t \right ) \\ \end{align*}

[_linear]

1.444

24997

\begin{align*} t y^{\prime }+2 y \ln \left (t \right )&=4 \ln \left (t \right ) \\ \end{align*}

[_separable]

2.246

24998

\begin{align*} y^{\prime }-\frac {n y}{t}&={\mathrm e}^{t} t^{n} \\ \end{align*}

[_linear]

1.949

24999

\begin{align*} -y+y^{\prime }&={\mathrm e}^{2 t} t \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.374

25000

\begin{align*} t y^{\prime }+3 y&=t^{2} \\ y \left (-1\right ) &= 2 \\ \end{align*}

[_linear]

2.231