| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.877 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
6.678 |
|
| \begin{align*}
2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.121 |
|
| \begin{align*}
y&=y^{\prime } x +k {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.173 |
|
| \begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.210 |
|
| \begin{align*}
y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.195 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.334 |
|
| \begin{align*}
y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
0.354 |
|
| \begin{align*}
{y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
958.542 |
|
| \begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _Clairaut] | ✓ | ✓ | ✓ | ✗ | 0.406 |
|
| \begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{n} \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.486 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.566 |
|
| \begin{align*}
2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
0.440 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.557 |
|
| \begin{align*}
{y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
1.049 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.723 |
|
| \begin{align*}
{y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.452 |
|
| \begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.587 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.454 |
|
| \begin{align*}
{y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.450 |
|
| \begin{align*}
y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.730 |
|
| \begin{align*}
8 y&={y^{\prime }}^{2}+3 x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.192 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y&=3 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
9 x {y^{\prime }}^{2}+3 y^{\prime } y+y^{8}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{2} y^{\prime } x +y^{3}&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘]] | ✓ | ✓ | ✓ | ✗ | 0.734 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.841 |
|
| \begin{align*}
4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| \begin{align*}
9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.413 |
|
| \begin{align*}
2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.035 |
|
| \begin{align*}
9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| \begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.069 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.726 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{3}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
1.455 |
|
| \begin{align*}
y {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.117 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.459 |
|
| \begin{align*}
6 x {y^{\prime }}^{2}-\left (2 y+3 x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.117 |
|
| \begin{align*}
9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.359 |
|
| \begin{align*}
4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
0.366 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.301 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.208 |
|
| \begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.457 |
|
| \begin{align*}
4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.375 |
|
| \begin{align*}
{y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
1.606 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.058 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✗ |
0.430 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.118 |
|
| \begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
0.907 |
|
| \begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.571 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.228 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| \begin{align*}
x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.341 |
|
| \begin{align*}
\left (1+y^{\prime }\right )^{2} \left (y-y^{\prime } x \right )&=1 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| \begin{align*}
{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.462 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.114 |
|
| \begin{align*}
y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
23.658 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{\prime } y-x -1&=0 \\
\end{align*} | [_dAlembert] | ✓ | ✓ | ✓ | ✗ | 1.709 |
|
| \begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.434 |
|
| \begin{align*}
y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.337 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.265 |
|
| \begin{align*}
2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.934 |
|
| \begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.230 |
|
| \begin{align*}
-{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.796 |
|
| \begin{align*}
y^{\prime \prime }+\beta ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.889 |
|
| \begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] | ✓ | ✓ | ✓ | ✗ | 0.359 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (2\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.911 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.677 |
|
| \begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✓ |
✗ |
53.602 |
|
| \begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= -\frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✓ |
✗ |
40.592 |
|
| \begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.538 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| \begin{align*}
2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.436 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
2.785 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✗ | 2.005 |
|
| \begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.828 |
|
| \begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
8.710 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.786 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=y^{\prime } \left (2 x -y^{\prime }\right ) \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|