2.2.249 Problems 24801 to 24900

Table 2.511: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

24801

\begin{align*} y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.877

24802

\begin{align*} {y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.162

24803

\begin{align*} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

6.678

24804

\begin{align*} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.286

24805

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.121

24806

\begin{align*} y&=y^{\prime } x +k {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.173

24807

\begin{align*} x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.356

24808

\begin{align*} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.357

24809

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.402

24810

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.332

24811

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.210

24812

\begin{align*} y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.195

24813

\begin{align*} x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.334

24814

\begin{align*} y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.354

24815

\begin{align*} {y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

958.542

24816

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.406

24817

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{n} \\ \end{align*}

[_Clairaut]

1.486

24818

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.566

24819

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.440

24820

\begin{align*} 2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.557

24821

\begin{align*} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.049

24822

\begin{align*} 4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.723

24823

\begin{align*} {y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.447

24824

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.452

24825

\begin{align*} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[_rational, _dAlembert]

1.587

24826

\begin{align*} 5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.454

24827

\begin{align*} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.450

24828

\begin{align*} y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.730

24829

\begin{align*} 8 y&={y^{\prime }}^{2}+3 x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.192

24830

\begin{align*} x {y^{\prime }}^{2}+y^{\prime } y&=3 y^{4} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.856

24831

\begin{align*} 9 x {y^{\prime }}^{2}+3 y^{\prime } y+y^{8}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.520

24832

\begin{align*} {y^{\prime }}^{2}+y^{2} y^{\prime } x +y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.734

24833

\begin{align*} 4 x {y^{\prime }}^{2}+4 y^{\prime } y-y^{4}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.841

24834

\begin{align*} 4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.446

24835

\begin{align*} 9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.413

24836

\begin{align*} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.646

24837

\begin{align*} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.035

24838

\begin{align*} 9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

0.329

24839

\begin{align*} y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.069

24840

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.726

24841

\begin{align*} y^{2} {y^{\prime }}^{3}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.455

24842

\begin{align*} y {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.726

24843

\begin{align*} y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.117

24844

\begin{align*} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.459

24845

\begin{align*} 6 x {y^{\prime }}^{2}-\left (2 y+3 x \right ) y^{\prime }+y&=0 \\ \end{align*}

[_quadrature]

0.117

24846

\begin{align*} 9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.359

24847

\begin{align*} 4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

0.366

24848

\begin{align*} x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.376

24849

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.301

24850

\begin{align*} y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.208

24851

\begin{align*} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.457

24852

\begin{align*} 4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.375

24853

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.606

24854

\begin{align*} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.234

24855

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.058

24856

\begin{align*} 16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.430

24857

\begin{align*} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.118

24858

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.907

24859

\begin{align*} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.571

24860

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.228

24861

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2}&=0 \\ \end{align*}

[_linear]

0.128

24862

\begin{align*} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.341

24863

\begin{align*} \left (1+y^{\prime }\right )^{2} \left (y-y^{\prime } x \right )&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.585

24864

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.462

24865

\begin{align*} x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\ \end{align*}

[_quadrature]

0.114

24866

\begin{align*} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

23.658

24867

\begin{align*} {y^{\prime }}^{2}+y^{\prime } y-x -1&=0 \\ \end{align*}

[_dAlembert]

1.709

24868

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.494

24869

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.342

24870

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.318

24871

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.434

24872

\begin{align*} y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.337

24873

\begin{align*} \left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.265

24874

\begin{align*} 2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.654

24875

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

24876

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.934

24877

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.230

24878

\begin{align*} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.796

24879

\begin{align*} y^{\prime \prime }+\beta ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.889

24880

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.359

24881

\begin{align*} \cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.653

24882

\begin{align*} y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\ y \left (2\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.285

24883

\begin{align*} y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.296

24884

\begin{align*} y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.911

24885

\begin{align*} y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.677

24886

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

53.602

24887

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

40.592

24888

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.538

24889

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.354

24890

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.242

24891

\begin{align*} 2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.436

24892

\begin{align*} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.224

24893

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.785

24894

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.005

24895

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.828

24896

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8.710

24897

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.786

24898

\begin{align*} x^{2} y^{\prime \prime }&=y^{\prime } \left (2 x -y^{\prime }\right ) \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.377

24899

\begin{align*} x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.293

24900

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.441