| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
4 y+y^{\prime \prime }&=12 \sin \left (x \right )+12 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=20 \,{\mathrm e}^{x}-20 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=x^{6} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=\sin \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.229 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x^{2}-2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.225 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 x -8 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.920 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2+x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2+x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.520 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{{\mathrm e}^{2 x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.337 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{\sqrt {1-{\mathrm e}^{-2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=\frac {6}{1+{\mathrm e}^{-2 x}} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 0.364 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-3 y&=\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=15 \sqrt {1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.531 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.511 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2 \,{\mathrm e}^{x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2 \,{\mathrm e}^{-x}}{\left (1+{\mathrm e}^{-2 x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1-{\mathrm e}^{2 x}\right )^{{3}/{2}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{2 x} \left (3 \tan \left ({\mathrm e}^{x}\right )+{\mathrm e}^{x} \sec \left ({\mathrm e}^{x}\right )^{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.300 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sec \left ({\mathrm e}^{-x}\right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}-{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{{\mathrm e}^{2 x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{3} \cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
v^{\prime }-2 v+2 w^{\prime }&=2-4 \,{\mathrm e}^{2 x} \\
2 v^{\prime }-3 v+3 w^{\prime }-w&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime }-2 y-v^{\prime }-v&=6 \,{\mathrm e}^{3 x} \\
2 y^{\prime }-3 y+v^{\prime }-3 v&=6 \,{\mathrm e}^{3 x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
0.423 |
|
| \begin{align*}
y^{\prime }+y-v^{\prime }-v&=0 \\
y^{\prime }+v^{\prime }-v&={\mathrm e}^{x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
2 v^{\prime }+2 v+w^{\prime }-w&=3 x \\
v^{\prime }+v+w^{\prime }+w&=1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
3 v^{\prime }+2 v+w^{\prime }-6 w&=5 \,{\mathrm e}^{x} \\
4 v^{\prime }+2 v+w^{\prime }-8 w&=5 \,{\mathrm e}^{x}+2 x -3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
2 y^{\prime }+2 y+w^{\prime }-w&=x +1 \\
y^{\prime }+3 y+w^{\prime }+w&=4 x +14 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.978 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-7 x y^{\prime } y+12 y^{2}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 0.104 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 \left (2 x +y\right ) y^{\prime }+8 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.100 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.111 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.089 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{2} x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| \begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.113 |
|
| \begin{align*}
y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| \begin{align*}
\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.100 |
|
| \begin{align*}
\left (x -y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2}&=4 y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.408 |
|
| \begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+y \left (y-x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| \begin{align*}
x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right )&=y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.140 |
|
| \begin{align*}
x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.197 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.619 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.441 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
0.340 |
|
| \begin{align*}
4 y^{3} {y^{\prime }}^{2}+4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
1.073 |
|
| \begin{align*}
{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.348 |
|