2.2.218 Problems 21701 to 21800

Table 2.449: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21701

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x -y&=-\ln \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.061

21702

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y p&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

1.223

21703

\begin{align*} y^{\prime }-5 y&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.282

21704

\begin{align*} y^{\prime }-5 y&=0 \\ y \left (\pi \right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.237

21705

\begin{align*} y^{\prime }-5 y&={\mathrm e}^{5 t} \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.239

21706

\begin{align*} y+y^{\prime }&=t \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.378

21707

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{5 t} \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.350

21708

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.430

21709

\begin{align*} y^{\prime }+2 y&=\cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.411

21710

\begin{align*} y^{\prime }+b y&=1 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.348

21711

\begin{align*} y^{\prime }+2 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.336

21712

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.278

21713

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.316

21714

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&=\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.482

21715

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{-t} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.458

21716

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=t \\ y \left (0\right ) &= -3 \\ y \left (1\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.402

21717

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.787

21718

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & t <6 \\ 1 & 6\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.552

21719

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 4 t & 0\le t \le 1 \\ 4 & 1<t \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

5.168

21720

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

5.936

21721

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_y]]

0.461

21722

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+2 y&=10 \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _linear, _nonhomogeneous]]

0.530

21723

\begin{align*} x^{\prime }-6 x+3 y&=8 \,{\mathrm e}^{t} \\ y^{\prime }-2 x-y&=4 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.483

21724

\begin{align*} y^{\prime }+z&=t \\ z^{\prime }+4 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} z \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.458

21725

\begin{align*} w^{\prime }+y&=\sin \left (t \right ) \\ y^{\prime }-z&={\mathrm e}^{t} \\ w+y+z^{\prime }&=1 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.618

21726

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.375

21727

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.342

21728

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{4}\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.242

21729

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 4 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.327

21730

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y \left (L \right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.780

21731

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.440

21732

\begin{align*} \sqrt {1-y^{2}}+\left (x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

216.308

21733

\begin{align*} y^{\prime }&=-\sqrt {1-y^{2}} \\ x^{\prime }&=x+2 y \\ \end{align*}

system_of_ODEs

0.051

21734

\begin{align*} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 y x&=0 \\ \end{align*}

[NONE]

0.911

21735

\begin{align*} x^{\prime }&=8 x-y \\ y^{\prime }&=4 x+12 y \\ \end{align*}

system_of_ODEs

0.473

21736

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-4 x+4 y \\ \end{align*}

system_of_ODEs

0.457

21737

\begin{align*} x^{\prime }&=2 x-5 y \\ y^{\prime }&=2 x-4 y \\ \end{align*}

system_of_ODEs

0.723

21738

\begin{align*} x^{\prime }&=2 x+2 y-z \\ y^{\prime }&=y+z \\ z^{\prime }&=z-y \\ \end{align*}

system_of_ODEs

1.010

21739

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=9 x+y \\ \end{align*}

system_of_ODEs

0.555

21740

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=4 x+3 y \\ \end{align*}

system_of_ODEs

0.530

21741

\begin{align*} x^{\prime }&=7 x-y+6 z \\ y^{\prime }&=-10 x+4 y-12 z \\ z^{\prime }&=-2 x+y-z \\ \end{align*}

system_of_ODEs

0.970

21742

\begin{align*} x+y^{\prime }&=\sin \left (t \right )+\cos \left (t \right ) \\ x^{\prime }+y&=\cos \left (t \right )-\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

1.098

21743

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

system_of_ODEs

0.504

21744

\begin{align*} x^{\prime }&=3 x+2 y \\ y^{\prime }&=-5 x+y \\ \end{align*}

system_of_ODEs

0.727

21745

\begin{align*} x^{\prime }&=4 x-y \\ y^{\prime }&=x+2 y \\ \end{align*}

system_of_ODEs

0.431

21746

\begin{align*} x^{\prime }&=6 x-3 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.539

21747

\begin{align*} 2 x^{\prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 t} \\ x^{\prime }-2 y^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.520

21748

\begin{align*} y^{\prime }&=y-3 z \\ z^{\prime }&=2 y-4 z \\ \end{align*}

system_of_ODEs

0.526

21749

\begin{align*} x^{\prime }&=4 x-y \\ y^{\prime }&=-4 x+4 y \\ \end{align*}

system_of_ODEs

0.552

21750

\begin{align*} x^{\prime }&=7 x-y+6 z \\ y^{\prime }&=-10 x+4 y-12 z \\ z^{\prime }&=-2 x+y-z \\ \end{align*}

system_of_ODEs

0.907

21751

\begin{align*} x^{\prime }&=3 x+y-z \\ y^{\prime }&=x+3 y-z \\ z^{\prime }&=3 x+3 y-z \\ \end{align*}

system_of_ODEs

0.738

21752

\begin{align*} x^{\prime }&=x-y-z \\ y^{\prime }&=y+3 z \\ z^{\prime }&=3 y+z \\ \end{align*}

system_of_ODEs

0.787

21753

\begin{align*} x^{\prime }&=y+{\mathrm e}^{t} \\ y^{\prime }&=-2 x+3 y+1 \\ \end{align*}

system_of_ODEs

0.798

21754

\begin{align*} x^{\prime }&=2 x-y-5 t \\ y^{\prime }&=3 x+6 y-4 \\ \end{align*}

system_of_ODEs

1.346

21755

\begin{align*} x^{\prime }&=2 x+y+3 \,{\mathrm e}^{2 t} \\ y^{\prime }&=-4 x+2 y+{\mathrm e}^{2 t} t \\ \end{align*}

system_of_ODEs

1.041

21756

\begin{align*} 2 x^{4} y y^{\prime }+y^{4}&=4 x^{6} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

71.490

21757

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.136

21758

\begin{align*} {y^{\prime \prime }}^{2} x^{2} \left (x^{2}-1\right )-1&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.686

21759

\begin{align*} y^{\prime \prime } x -{y^{\prime }}^{3}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.703

21760

\begin{align*} y^{\prime }&=y^{\prime \prime } x +{y^{\prime \prime }}^{2} \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.720

21761

\begin{align*} 2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

53.965

21762

\begin{align*} 2 y y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6.882

21763

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

13.501

21764

\begin{align*} y^{\prime \prime }-\frac {2 {y^{\prime }}^{2}}{y}-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

37.560

21765

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

50.521

21766

\begin{align*} x&=y-{y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

3.065

21767

\begin{align*} y&=2 y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.807

21768

\begin{align*} y&=2 x +y^{\prime }-\frac {{y^{\prime }}^{3}}{3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

133.033

21769

\begin{align*} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.056

21770

\begin{align*} x {y^{\prime }}^{2}-3 y^{\prime } y+9 x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

17.309

21771

\begin{align*} y^{\prime } \left (y^{\prime }+y\right )&=x \left (x +y\right ) \\ \end{align*}

[_quadrature]

0.307

21772

\begin{align*} x^{2} {y^{\prime }}^{2}+4 x y^{\prime } y+3 y^{2}&=0 \\ \end{align*}

[_separable]

0.182

21773

\begin{align*} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

0.369

21774

\begin{align*} y {y^{\prime }}^{2}-\left (y x +x +y^{2}\right ) y^{\prime }+x^{2}+y x&=0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.352

21775

\begin{align*} 2 {y^{\prime }}^{2}-2 y^{\prime } y-1&=0 \\ \end{align*}

[_quadrature]

2.950

21776

\begin{align*} \left ({y^{\prime }}^{2}-y^{2}\right ) {\mathrm e}^{y^{\prime }}-x {y^{\prime }}^{2}+x y^{2}&=0 \\ \end{align*}

[_quadrature]

2.091

21777

\begin{align*} x^{\prime }&=2 x-7 y \\ y^{\prime }&=3 x-8 y \\ \end{align*}

system_of_ODEs

0.548

21778

\begin{align*} x^{\prime }&=2 x+4 y \\ y^{\prime }&=-2 x+6 y \\ \end{align*}

system_of_ODEs

0.768

21779

\begin{align*} x^{\prime }&=x+4 y-y^{2} \\ y^{\prime }&=6 x-y+2 x y \\ \end{align*}

system_of_ODEs

0.061

21780

\begin{align*} x^{\prime }&=\sin \left (x\right )-4 y \\ y^{\prime }&=\sin \left (2 x\right )-5 y \\ \end{align*}

system_of_ODEs

0.061

21781

\begin{align*} x^{\prime }&=8 x-y^{2} \\ y^{\prime }&=6 x^{2}-6 y \\ \end{align*}

system_of_ODEs

0.064

21782

\begin{align*} x^{\prime }&=-x^{2}-y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.058

21783

\begin{align*} x^{\prime }&=-x^{3}-y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.056

21784

\begin{align*} x^{\prime }&=2 x y \\ y^{\prime }&=3 y^{2}-x^{2} \\ \end{align*}

system_of_ODEs

0.058

21785

\begin{align*} x^{\prime }&=x^{2} \\ y^{\prime }&=2 y^{2}-x y \\ \end{align*}

system_of_ODEs

0.058

21786

\begin{align*} x^{\prime }&=-x+y^{2} \\ y^{\prime }&=x^{2}-y \\ \end{align*}

system_of_ODEs

0.062

21787

\begin{align*} x^{\prime \prime }&=4 x^{3}-4 x \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.672

21788

\begin{align*} x^{\prime \prime }+\sin \left (x\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

49.154

21789

\begin{align*} x^{\prime \prime }&=x^{2}-4 x+\lambda \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

102.660

21790

\begin{align*} y^{\prime } x&=x +2 y \\ \end{align*}

[_linear]

5.037

21791

\begin{align*} y^{\prime } y+x&=0 \\ \end{align*}

[_separable]

22.436

21792

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.678

21793

\begin{align*} y^{\prime \prime }+y^{\prime }&=6 y+5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.539

21794

\begin{align*} y^{\prime }+y&=2 \,{\mathrm e}^{-x} \\ \end{align*}

[[_linear, ‘class A‘]]

36.431

21795

\begin{align*} y^{\prime }&=-\frac {x}{4 y} \\ \end{align*}

[_separable]

9.153

21796

\begin{align*} y^{\prime }&=\frac {x}{y} \\ \end{align*}

[_separable]

26.850

21797

\begin{align*} 3 x^{2}-2 y^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

11.879

21798

\begin{align*} 1+y+y^{2}+x \left (x^{2}-4\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

38.114

21799

\begin{align*} r^{\prime } \sin \left (t \right )+r \cos \left (t \right )&=0 \\ \end{align*}

[_separable]

5.425

21800

\begin{align*} x^{3} y^{\prime }-x^{3}&=1 \\ \end{align*}

[_quadrature]

0.548