2.15.1 Problem (a)
Internal
problem
ID
[21001]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
V.
Complex
Linear
Systems.
Excercise
VIII
at
page
221
Problem
number
:
(a)
Date
solved
:
Saturday, November 29, 2025 at 01:36:06 AM
CAS
classification
:
system_of_ODEs
\begin{align*}
w_{1}^{\prime }&=w_{2} \\
w_{2}^{\prime }&=\frac {a w_{1}}{z^{2}} \\
\end{align*}
Does not currently support non autonomous system of first order linear differential
equations.
✓ Maple. Time used: 0.057 (sec). Leaf size: 94
ode:=[diff(w__1(z),z) = w__2(z), diff(w__2(z),z) = a*w__1(z)/z^2];
dsolve(ode);
\begin{align*}
w_{1} \left (z \right ) &= c_1 \,z^{\frac {1}{2}+\frac {\sqrt {1+4 a}}{2}}+c_2 \,z^{\frac {1}{2}-\frac {\sqrt {1+4 a}}{2}} \\
w_{2} \left (z \right ) &= \frac {c_1 \,z^{\frac {1}{2}+\frac {\sqrt {1+4 a}}{2}} \left (1+\sqrt {1+4 a}\right )+c_2 \,z^{\frac {1}{2}-\frac {\sqrt {1+4 a}}{2}} \left (1-\sqrt {1+4 a}\right )}{2 z} \\
\end{align*}
✓ Mathematica. Time used: 0.004 (sec). Leaf size: 128
ode={D[w1[z],z]==w2[z],D[w2[z],z]==a*w1[z]/z^2};
ic={};
DSolve[{ode,ic},{w1[z],w2[z]},z,IncludeSingularSolutions->True]
\begin{align*} \text {w1}(z)&\to z^{\frac {1}{2}-\frac {1}{2} i \sqrt {-4 a-1}} \left (c_2 z^{i \sqrt {-4 a-1}}+c_1\right )\\ \text {w2}(z)&\to \frac {1}{2} z^{-\frac {1}{2}-\frac {1}{2} i \sqrt {-4 a-1}} \left (\left (1+i \sqrt {-4 a-1}\right ) c_2 z^{i \sqrt {-4 a-1}}+\left (1-i \sqrt {-4 a-1}\right ) c_1\right ) \end{align*}
✗ Sympy
from sympy import *
z = symbols("z")
a = symbols("a")
w1 = Function("w1")
w2 = Function("w2")
ode=[Eq(-w2(z) + Derivative(w1(z), z),0),Eq(-a*w1(z)/z**2 + Derivative(w2(z), z),0)]
ics = {}
dsolve(ode,func=[w1(z),w2(z)],ics=ics)
ValueError : The function cannot be automatically detected for nan.