2.2.205 Problems 20401 to 20500

Table 2.423: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20401

\begin{align*} 3 {y^{\prime }}^{5}-y^{\prime } y+1&=0 \\ \end{align*}

[_quadrature]

0.340

20402

\begin{align*} y&=x {y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[_rational, _dAlembert]

1.305

20403

\begin{align*} x {y^{\prime }}^{2}+a x&=2 y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.632

20404

\begin{align*} y^{\prime }+{y^{\prime }}^{3}&={\mathrm e}^{y} \\ \end{align*}

[_quadrature]

3.715

20405

\begin{align*} y&=\sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \\ \end{align*}

[_quadrature]

8.832

20406

\begin{align*} y&=\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) \\ \end{align*}

[_linear]

1.988

20407

\begin{align*} y&=\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) \\ \end{align*}

[_dAlembert]

1.513

20408

\begin{align*} x&=y^{\prime } y-{y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

1.748

20409

\begin{align*} \left (2 x -b \right ) y^{\prime }&=y-a y {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.184

20410

\begin{align*} x&=y+a \ln \left (y^{\prime }\right ) \\ \end{align*}

[_separable]

3.510

20411

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.220

20412

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) x&=1 \\ \end{align*}

[_quadrature]

0.243

20413

\begin{align*} x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[_quadrature]

0.363

20414

\begin{align*} y&=y^{\prime } x +\frac {a}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.563

20415

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.463

20416

\begin{align*} y&=y^{\prime } x +a y^{\prime } \left (1-y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.250

20417

\begin{align*} y&=y^{\prime } x +\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.555

20418

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.719

20419

\begin{align*} \left (y-y^{\prime } x \right ) \left (y^{\prime }-1\right )&=y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.259

20420

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.505

20421

\begin{align*} y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.272

20422

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.370

20423

\begin{align*} 4 y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.309

20424

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.168

20425

\begin{align*} x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=a \\ \end{align*}

[_quadrature]

0.509

20426

\begin{align*} x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}&=x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.735

20427

\begin{align*} y&=y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

24.388

20428

\begin{align*} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

2.537

20429

\begin{align*} y&=\frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}} \\ \end{align*}

[_quadrature]

2.697

20430

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (y^{2}+x^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

89.935

20431

\begin{align*} 4 x {y^{\prime }}^{2}+4 y^{\prime } y&=y^{4} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.007

20432

\begin{align*} 2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (\cos \left (x \right ) x -4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+\sin \left (2 x \right ) x&=0 \\ \end{align*}

[_quadrature]

1.082

20433

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

29.470

20434

\begin{align*} y-y^{\prime } x&=y^{\prime } y+x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.656

20435

\begin{align*} a^{2} y {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.919

20436

\begin{align*} x^{2} \left (y-y^{\prime } x \right )&=y {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.960

20437

\begin{align*} \left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

1.129

20438

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}+a^{4}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.746

20439

\begin{align*} y^{\prime } y+x&=a {y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

29.817

20440

\begin{align*} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\ \end{align*}

[_separable]

0.401

20441

\begin{align*} 2 y&=y^{\prime } x +\frac {a}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.859

20442

\begin{align*} y&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\ \end{align*}

[_quadrature]

13.447

20443

\begin{align*} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

67.817

20444

\begin{align*} y&=a y^{\prime }+b {y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

1.132

20445

\begin{align*} {y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 y x -2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y}&=0 \\ \end{align*}

[_quadrature]

0.295

20446

\begin{align*} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }&=3 x y^{2}-x^{2} \\ \end{align*}

[_exact, _rational]

2.221

20447

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.317

20448

\begin{align*} \left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.372

20449

\begin{align*} \left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y&=\left (\sin \left (\frac {y}{x}\right ) y-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.999

20450

\begin{align*} \left (-y+y^{\prime } x \right ) \left (y^{\prime } y+x \right )&=h^{2} y^{\prime } \\ \end{align*}

[_rational]

154.206

20451

\begin{align*} y^{2} x^{2}-3 x y^{\prime } y&=2 y^{2}+x^{3} \\ \end{align*}

[_rational, _Bernoulli]

3.216

20452

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.704

20453

\begin{align*} y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right )&=m \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.316

20454

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.202

20455

\begin{align*} 4 {y^{\prime }}^{2}&=9 x \\ \end{align*}

[_quadrature]

0.395

20456

\begin{align*} 4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2}&=0 \\ \end{align*}

[_quadrature]

1.032

20457

\begin{align*} \left (8 {y^{\prime }}^{3}-27\right ) x&=\frac {12 {y^{\prime }}^{2}}{x} \\ \end{align*}

[_quadrature]

63.197

20458

\begin{align*} 3 y&=2 y^{\prime } x -\frac {2 {y^{\prime }}^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.852

20459

\begin{align*} {y^{\prime }}^{2}+y^{2}&=1 \\ \end{align*}

[_quadrature]

0.709

20460

\begin{align*} \left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\ \end{align*}

[_quadrature]

0.247

20461

\begin{align*} 4 x {y^{\prime }}^{2}&=\left (3 x -1\right )^{2} \\ \end{align*}

[_quadrature]

1.104

20462

\begin{align*} x {y^{\prime }}^{2}-\left (x -a \right )^{2}&=0 \\ \end{align*}

[_quadrature]

0.950

20463

\begin{align*} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.506

20464

\begin{align*} 3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.848

20465

\begin{align*} {y^{\prime }}^{2}+2 x^{3} y^{\prime }-4 x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.241

20466

\begin{align*} y^{2} \left (y-y^{\prime } x \right )&=x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.268

20467

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.294

20468

\begin{align*} {y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

71.869

20469

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\ \end{align*}

[_quadrature]

1.822

20470

\begin{align*} y+x^{2}&={y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.488

20471

\begin{align*} {y^{\prime }}^{3}&=y^{4} \left (y^{\prime } x +y\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.763

20472

\begin{align*} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y}&={\mathrm e}^{-2 x} {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.509

20473

\begin{align*} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-y x&=0 \\ \end{align*}

[_rational]

112.175

20474

\begin{align*} {y^{\prime }}^{2}&=\left (4 y+1\right ) \left (y^{\prime }-y\right ) \\ \end{align*}

[_quadrature]

0.993

20475

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+b^{2}-y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.487

20476

\begin{align*} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[_rational]

83.497

20477

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

14.890

20478

\begin{align*} 8 x {y^{\prime }}^{3}&=y \left (12 {y^{\prime }}^{2}-9\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.011

20479

\begin{align*} 4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2}&=0 \\ \end{align*}

[_separable]

0.326

20480

\begin{align*} \left (x^{2} y^{\prime }+y^{2}\right ) \left (y^{\prime } x +y\right )&=\left (1+y^{\prime }\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

32.674

20481

\begin{align*} y-y^{\prime } x&=a \left (y^{\prime }+y^{2}\right ) \\ \end{align*}

[_separable]

3.696

20482

\begin{align*} y-y^{\prime } x&=b \left (1+x^{2} y^{\prime }\right ) \\ \end{align*}

[_separable]

2.224

20483

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y^{\prime } y\right )&=2 y^{\prime } \\ \end{align*}

[_rational]

47.078

20484

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.709

20485

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.548

20486

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.108

20487

\begin{align*} x^{2} y^{\prime \prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.177

20488

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=\ln \left (x \right )^{2} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.271

20489

\begin{align*} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.319

20490

\begin{align*} x^{2} y^{\prime \prime \prime }+y^{\prime \prime } x -4 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.180

20491

\begin{align*} -8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.113

20492

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.039

20493

\begin{align*} x^{2} y^{\prime \prime \prime }+3 y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.248

20494

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.698

20495

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.601

20496

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.154

20497

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.440

20498

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.179

20499

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.143

20500

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{m} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339