2.2.206 Problems 20501 to 20600

Table 2.425: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20501

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.975

20502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.880

20503

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.128

20504

\begin{align*} x^{2} y^{\prime \prime \prime }+3 y^{\prime \prime } x +2 y^{\prime }&=x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.375

20505

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=4 x \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.713

20506

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y&=x^{2}+3 x -4 \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.421

20507

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.866

20508

\begin{align*} -8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{2}+\frac {1}{x^{2}} \\ \end{align*}

[[_3rd_order, _reducible, _mu_y2]]

0.312

20509

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right )+x \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.403

20510

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.229

20511

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=x^{2} \sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

56.003

20512

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.272

20513

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=\left (1+\ln \left (x \right )\right )^{2} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.777

20514

\begin{align*} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.391

20515

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }&=\left (2 x +3\right ) \left (4+2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.834

20516

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.795

20517

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right )&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.724

20518

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

20519

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y&=x^{2}+3 x -4 \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.426

20520

\begin{align*} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.307

20521

\begin{align*} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.471

20522

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.650

20523

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.612

20524

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.581

20525

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.784

20526

\begin{align*} y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.843

20527

\begin{align*} \left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.905

20528

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.724

20529

\begin{align*} 3 y x +\left (x^{2}+2\right ) y^{\prime }+4 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.040

20530

\begin{align*} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.496

20531

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y&=2 x \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.374

20532

\begin{align*} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y&=x^{4}+2 x -5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

20533

\begin{align*} y^{\prime \prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _quadrature]]

0.157

20534

\begin{align*} y^{2}+\left (2 y x -1\right ) y^{\prime }+y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.035

20535

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.021

20536

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.867

20537

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.774

20538

\begin{align*} x^{3} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.250

20539

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.031

20540

\begin{align*} y^{\prime \prime \prime } \csc \left (x \right )^{2}&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.241

20541

\begin{align*} y^{\prime \prime } \sqrt {a^{2}+x^{2}}&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.730

20542

\begin{align*} x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.549

20543

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.059

20544

\begin{align*} y^{3} y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.519

20545

\begin{align*} y^{\prime \prime }-a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.516

20546

\begin{align*} y^{\prime \prime }+\frac {a^{2}}{y}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.491

20547

\begin{align*} y^{\prime \prime }&=y^{3}-y \\ \end{align*}

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

3.559

20548

\begin{align*} y^{\prime \prime }&={\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.609

20549

\begin{align*} y^{\prime \prime }&=y^{\prime } x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.632

20550

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.233

20551

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.851

20552

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.489

20553

\begin{align*} x^{2} y^{\prime \prime \prime }-4 y^{\prime \prime } x +6 y^{\prime }&=4 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.228

20554

\begin{align*} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )}&=\frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.080

20555

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.731

20556

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=a x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.973

20557

\begin{align*} y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.588

20558

\begin{align*} x y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.286

20559

\begin{align*} y^{\prime }-y^{\prime \prime } x -\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.707

20560

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.903

20561

\begin{align*} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.055

20562

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.260

20563

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.535

20564

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.803

20565

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.522

20566

\begin{align*} y^{\prime \prime }&=a {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.117

20567

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.932

20568

\begin{align*} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

38.692

20569

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

1.106

20570

\begin{align*} a^{2} y^{\prime \prime } y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

3.480

20571

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.954

20572

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6.609

20573

\begin{align*} a y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

5.223

20574

\begin{align*} y^{\prime \prime }&=a^{2}+k^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7.435

20575

\begin{align*} a^{2} {y^{\prime \prime }}^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

7.900

20576

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

9.059

20577

\begin{align*} a^{2} y^{\prime \prime \prime \prime }&=y^{\prime \prime } \\ \end{align*}

[[_high_order, _missing_x]]

0.058

20578

\begin{align*} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.064

20579

\begin{align*} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

[[_high_order, _missing_y]]

0.133

20580

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.450

20581

\begin{align*} x^{2} y^{\prime \prime \prime \prime }&=\lambda y^{\prime \prime } \\ \end{align*}

[[_high_order, _missing_y]]

0.460

20582

\begin{align*} n \,x^{3} y^{\prime \prime \prime }&=y-y^{\prime } x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.141

20583

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.609

20584

\begin{align*} 2 x^{2} y y^{\prime \prime }+y^{2}&=x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.387

20585

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.166

20586

\begin{align*} x^{4} y^{\prime \prime }&=\left (x^{3}+2 y x \right ) y^{\prime }-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.801

20587

\begin{align*} x^{4} y^{\prime \prime }-x^{3} y^{\prime }&=x^{2} {y^{\prime }}^{2}-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.016

20588

\begin{align*} x^{2} y^{\prime \prime }+4 y^{2}-6 y&=x^{4} {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.218

20589

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.499

20590

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.428

20591

\begin{align*} a y^{\prime \prime \prime }&=y^{\prime \prime } \\ \end{align*}

[[_3rd_order, _missing_x]]

0.046

20592

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+1&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.240

20593

\begin{align*} y^{\prime \prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.147

20594

\begin{align*} y^{\prime \prime }&=\frac {1}{\sqrt {a y}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

52.122

20595

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.619

20596

\begin{align*} -a y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

16.873

20597

\begin{align*} \sin \left (y\right )^{3} y^{\prime \prime }&=\cos \left (y\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

131.672

20598

\begin{align*} {\mathrm e}^{x} \left (-y^{\prime }+y^{\prime \prime } x \right )&=x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.530

20599

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x&=2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.730

20600

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1.858