2.2.204 Problems 20301 to 20400

Table 2.421: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20301

\begin{align*} -y+y^{\prime } x&=x \sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.688

20302

\begin{align*} y \ln \left (y\right )+y^{\prime } x&=y x \,{\mathrm e}^{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.022

20303

\begin{align*} -y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.253

20304

\begin{align*} x \left (y^{2}-a^{2}+x^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.394

20305

\begin{align*} y^{\prime }&=\frac {1+x^{2}+y^{2}}{2 x y} \\ \end{align*}

[_rational, _Bernoulli]

2.495

20306

\begin{align*} y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.708

20307

\begin{align*} y+\left (y^{n} a \,x^{2}-2 x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.746

20308

\begin{align*} y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.309

20309

\begin{align*} {x^{\prime }}^{2}&=k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

6.707

20310

\begin{align*} y^{\prime } y+b y^{2}&=a \cos \left (x \right ) \\ \end{align*}

[_Bernoulli]

3.133

20311

\begin{align*} y^{\prime }&={\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y} \\ \end{align*}

[_separable]

1.938

20312

\begin{align*} x^{2}+y^{2}+x -\left (2 x^{2}+2 y^{2}-y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.726

20313

\begin{align*} 2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.084

20314

\begin{align*} y \left (1+\frac {1}{x}\right )+\cos \left (y\right )+\left (x +\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

30.915

20315

\begin{align*} \left (2 x +2 y+3\right ) y^{\prime }&=x +y+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.061

20316

\begin{align*} y^{\prime }&=\frac {\left (2 \ln \left (x \right )+1\right ) x}{\sin \left (y\right )+y \cos \left (y\right )} \\ \end{align*}

[_separable]

24.884

20317

\begin{align*} s^{\prime }+x^{2}&=x^{2} {\mathrm e}^{3 s} \\ \end{align*}

[_separable]

2.311

20318

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.283

20319

\begin{align*} y^{\prime }&=\sin \left (x +y\right )+\cos \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

35.711

20320

\begin{align*} y^{\prime }+\frac {\tan \left (y\right )}{x}&=\frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

43.510

20321

\begin{align*} x^{2}-a y&=\left (a x -y^{2}\right ) y^{\prime } \\ \end{align*}

[_exact, _rational]

1.574

20322

\begin{align*} y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

[_Bernoulli]

3.358

20323

\begin{align*} x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.436

20324

\begin{align*} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\ \end{align*}

[_linear]

4.519

20325

\begin{align*} y-y^{\prime } x +x^{2}+1+x^{2} \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

2.221

20326

\begin{align*} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right )&=x^{3} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.513

20327

\begin{align*} y^{\prime }+\frac {a x +b y+c}{b x +f y+e}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.853

20328

\begin{align*} y^{\prime \prime }-n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.855

20329

\begin{align*} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.044

20330

\begin{align*} 2 x^{\prime \prime }+5 x^{\prime }-12 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

20331

\begin{align*} y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.180

20332

\begin{align*} 9 x^{\prime \prime }+18 x^{\prime }-16 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.193

20333

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.055

20334

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.229

20335

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.045

20336

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.050

20337

\begin{align*} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.059

20338

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.052

20339

\begin{align*} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.051

20340

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.045

20341

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.057

20342

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.284

20343

\begin{align*} y^{\prime \prime }-y&=2+5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.279

20344

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=15 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

20345

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.566

20346

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{\frac {5 x}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.380

20347

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

20348

\begin{align*} y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y&={\mathrm e}^{k x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.650

20349

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (2 x \right )+\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.607

20350

\begin{align*} y^{\prime \prime }+a^{2} y&=\cos \left (a x \right )+\cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.953

20351

\begin{align*} 4 y+y^{\prime \prime }&={\mathrm e}^{x}+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.640

20352

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y&=\cos \left (4 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.174

20353

\begin{align*} y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.311

20354

\begin{align*} y^{\prime \prime }+y&=\sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.890

20355

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.093

20356

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.099

20357

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime }&=x^{2}+1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.107

20358

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x}+x^{2}+x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.119

20359

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.100

20360

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

20361

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.424

20362

\begin{align*} y^{\prime \prime }-y&=\cos \left (x \right ) \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

20363

\begin{align*} y^{\prime \prime \prime }-7 y^{\prime }-6 y&={\mathrm e}^{2 x} \left (x +1\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.110

20364

\begin{align*} y+y^{\prime \prime }+y^{\prime \prime \prime \prime }&=a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.801

20365

\begin{align*} y^{\prime \prime }+4 y^{\prime }-12 y&=\left (x -1\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

20366

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

20367

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.595

20368

\begin{align*} y^{\prime \prime \prime \prime }-y&=x \sin \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.435

20369

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.459

20370

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

20371

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.314

20372

\begin{align*} y+y^{\prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

1.189

20373

\begin{align*} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y&=\sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

1.325

20374

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=16 x^{2}+256 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.152

20375

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.436

20376

\begin{align*} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y&=96 \sin \left (2 x \right ) \cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.649

20377

\begin{align*} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.068

20378

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right )&=0 \\ y \left (\frac {\pi }{2}\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.593

20379

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=24 \cos \left (x \right ) x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 12 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.668

20380

\begin{align*} {y^{\prime }}^{2}-7 y^{\prime }+12&=0 \\ \end{align*}

[_quadrature]

0.165

20381

\begin{align*} {y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\ \end{align*}

[_quadrature]

0.171

20382

\begin{align*} {y^{\prime }}^{2}-9 y^{\prime }+18&=0 \\ \end{align*}

[_quadrature]

0.170

20383

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2}&=0 \\ \end{align*}

[_quadrature]

0.177

20384

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\ \end{align*}

[_separable]

0.996

20385

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\ \end{align*}

[_quadrature]

0.703

20386

\begin{align*} y^{\prime } \left (y^{\prime }-y\right )&=x \left (x +y\right ) \\ \end{align*}

[_quadrature]

0.186

20387

\begin{align*} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\ \end{align*}

[_quadrature]

0.401

20388

\begin{align*} x +y {y^{\prime }}^{2}&=\left (y x +1\right ) y^{\prime } \\ \end{align*}

[_quadrature]

0.179

20389

\begin{align*} x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y&=0 \\ \end{align*}

[_quadrature]

0.169

20390

\begin{align*} {y^{\prime }}^{3}-a \,x^{4}&=0 \\ \end{align*}

[_quadrature]

1.054

20391

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x +y^{\prime } y+y x&=0 \\ \end{align*}

[_quadrature]

0.255

20392

\begin{align*} {y^{\prime }}^{3}-y^{\prime } \left (x^{2}+y x +y^{2}\right )+x y \left (x +y\right )&=0 \\ \end{align*}

[_quadrature]

0.221

20393

\begin{align*} \left (y^{\prime }+y+x \right ) \left (y^{\prime } x +x +y\right ) \left (y^{\prime }+2 x \right )&=0 \\ \end{align*}

[_quadrature]

0.238

20394

\begin{align*} x^{2} {y^{\prime }}^{3}+y \left (x^{2} y+1\right ) {y^{\prime }}^{2}+y^{2} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

18.877

20395

\begin{align*} x^{2} {y^{\prime }}^{2}+x y^{\prime } y-6 y^{2}&=0 \\ \end{align*}

[_separable]

0.122

20396

\begin{align*} {y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.200

20397

\begin{align*} \left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\ \end{align*}

[_quadrature]

0.264

20398

\begin{align*} y&=3 x +a \ln \left (y^{\prime }\right ) \\ \end{align*}

[_separable]

4.147

20399

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+x&=0 \\ \end{align*}

[_dAlembert]

2.153

20400

\begin{align*} y&=x +a \arctan \left (y^{\prime }\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

9.392