2.2.202 Problems 20101 to 20200

Table 2.417: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20101

\begin{align*} \left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.446

20102

\begin{align*} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.389

20103

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.648

20104

\begin{align*} -8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.104

20105

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.878

20106

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.102

20107

\begin{align*} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=10 c +\frac {10}{x} \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.500

20108

\begin{align*} 16 \left (x +1\right )^{4} y^{\prime \prime \prime \prime }+96 \left (x +1\right )^{3} y^{\prime \prime \prime }+104 \left (x +1\right )^{2} y^{\prime \prime }+8 \left (x +1\right ) y^{\prime }+y&=x^{2}+4 x +3 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

20109

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.902

20110

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{m} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.205

20111

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=\left (1+\ln \left (x \right )\right )^{2} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.706

20112

\begin{align*} y x -x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.241

20113

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.388

20114

\begin{align*} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y&=n^{2} x^{m} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.886

20115

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +y&=\frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.301

20116

\begin{align*} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.261

20117

\begin{align*} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y&=x^{4}+2 x -5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

20118

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.499

20119

\begin{align*} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.421

20120

\begin{align*} \sqrt {x}\, y^{\prime \prime }+2 y^{\prime } x +3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.717

20121

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }&=x y^{2} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

4.474

20122

\begin{align*} x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}-3 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.460

20123

\begin{align*} y^{\prime \prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.085

20124

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+1&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.209

20125

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.833

20126

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.836

20127

\begin{align*} y^{\prime \prime }&=\frac {1}{\sqrt {a y}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

23.947

20128

\begin{align*} y^{\prime \prime }+\frac {a^{2}}{y^{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

58.864

20129

\begin{align*} y^{\prime \prime }-\frac {a^{2}}{y^{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

57.627

20130

\begin{align*} x^{2} y^{\prime \prime \prime }-4 y^{\prime \prime } x +6 y^{\prime }&=4 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.184

20131

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

1.534

20132

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.395

20133

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.874

20134

\begin{align*} y^{\prime \prime }-a {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.451

20135

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.134

20136

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.054

20137

\begin{align*} 2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.237

20138

\begin{align*} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.045

20139

\begin{align*} y^{\left (5\right )}-m^{2} y^{\prime \prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

[[_high_order, _missing_y]]

0.104

20140

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.417

20141

\begin{align*} a^{2} y^{\prime \prime } y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1.719

20142

\begin{align*} a y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

1.485

20143

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.537

20144

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.455

20145

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }+4 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.621

20146

\begin{align*} x^{4} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.067

20147

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.219

20148

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.332

20149

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.575

20150

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.462

20151

\begin{align*} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

107.994

20152

\begin{align*} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )}&=\frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.902

20153

\begin{align*} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

3.182

20154

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y&=2 x \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.311

20155

\begin{align*} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.040

20156

\begin{align*} {y^{\prime }}^{2}-y y^{\prime \prime }&=n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

6.255

20157

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y&=\frac {2}{x^{3}} \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.257

20158

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.148

20159

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x&=2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.708

20160

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.557

20161

\begin{align*} x y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.235

20162

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.717

20163

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.489

20164

\begin{align*} y^{\prime \prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.128

20165

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.697

20166

\begin{align*} y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=\sin \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.357

20167

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }&=2 y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.350

20168

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.644

20169

\begin{align*} y^{3} y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.178

20170

\begin{align*} y^{\prime \prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _quadrature]]

0.170

20171

\begin{align*} y^{\prime \prime }&=a^{2}+k^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

5.138

20172

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.675

20173

\begin{align*} y x -x^{2} y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.097

20174

\begin{align*} \left (-x +3\right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

20175

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.984

20176

\begin{align*} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.440

20177

\begin{align*} a^{2} {y^{\prime \prime }}^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.175

20178

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.594

20179

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.331

20180

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.431

20181

\begin{align*} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.263

20182

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.701

20183

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.299

20184

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.240

20185

\begin{align*} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.425

20186

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=n^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.360

20187

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

20188

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.458

20189

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.510

20190

\begin{align*} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.100

20191

\begin{align*} y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.447

20192

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.314

20193

\begin{align*} y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.086

20194

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.512

20195

\begin{align*} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.135

20196

\begin{align*} x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.035

20197

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.157

20198

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.140

20199

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.753

20200

\begin{align*} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.355