2.2.192 Problems 19101 to 19200

Table 2.397: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

19101

\begin{align*} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.481

19102

\begin{align*} \left (y^{2} x^{2}-1\right ) y^{\prime }+2 x y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.844

19103

\begin{align*} a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

6.739

19104

\begin{align*} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.631

19105

\begin{align*} y^{\prime }&=2 y x -x^{3}+x \\ \end{align*}

[_linear]

1.782

19106

\begin{align*} y-x y^{2} \ln \left (x \right )+y^{\prime } x&=0 \\ \end{align*}

[_Bernoulli]

2.828

19107

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\ \end{align*}

[_rational]

4.044

19108

\begin{align*} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\ \end{align*}

[_quadrature]

0.294

19109

\begin{align*} x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}&=y^{2} x^{2}+x^{4} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18.423

19110

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

[_quadrature]

0.223

19111

\begin{align*} x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.583

19112

\begin{align*} x {y^{\prime }}^{3}&=1+y^{\prime } \\ \end{align*}

[_quadrature]

0.512

19113

\begin{align*} {y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right )&=0 \\ \end{align*}

[_quadrature]

33.165

19114

\begin{align*} {y^{\prime }}^{3}+y^{3}-3 y^{\prime } y&=0 \\ \end{align*}

[_quadrature]

71.784

19115

\begin{align*} y&={y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \\ \end{align*}

[_quadrature]

1.518

19116

\begin{align*} y^{2} \left (y^{\prime }-1\right )&=\left (2-y^{\prime }\right )^{2} \\ \end{align*}

[_quadrature]

1.639

19117

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 \alpha \\ \end{align*}

[_quadrature]

0.707

19118

\begin{align*} {y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

41.967

19119

\begin{align*} y&=2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.602

19120

\begin{align*} y&=\frac {k \left (y^{\prime } y+x \right )}{\sqrt {1+{y^{\prime }}^{2}}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

97.827

19121

\begin{align*} x&=y^{\prime } y+a {y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

28.454

19122

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{3} \\ \end{align*}

[_dAlembert]

5.441

19123

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.196

19124

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.429

19125

\begin{align*} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y^{\prime } y+y^{2}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.239

19126

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.654

19127

\begin{align*} y^{\prime }&=\sqrt {y-x} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.883

19128

\begin{align*} y^{\prime }&=\sqrt {y-x}+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.523

19129

\begin{align*} y^{\prime }&=\sqrt {y} \\ \end{align*}

[_quadrature]

1.087

19130

\begin{align*} y^{\prime }&=y \ln \left (y\right ) \\ \end{align*}

[_quadrature]

0.659

19131

\begin{align*} y^{\prime }&=y \ln \left (y\right )^{2} \\ \end{align*}

[_quadrature]

0.683

19132

\begin{align*} y^{\prime }&=-x +\sqrt {x^{2}+2 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.449

19133

\begin{align*} y^{\prime }&=-x -\sqrt {x^{2}+2 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.352

19134

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.726

19135

\begin{align*} x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.698

19136

\begin{align*} y^{2} \left (y^{\prime }-1\right )&=\left (2-y^{\prime }\right )^{2} \\ \end{align*}

[_quadrature]

1.489

19137

\begin{align*} {y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

35.919

19138

\begin{align*} x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.832

19139

\begin{align*} y&={y^{\prime }}^{2}-y^{\prime } x +\frac {x^{3}}{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

17.542

19140

\begin{align*} y&=2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.570

19141

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+{\mathrm e}^{x}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.359

19142

\begin{align*} {y^{\prime \prime \prime }}^{2}+x^{2}&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

1651.873

19143

\begin{align*} y^{\prime \prime }&=\frac {1}{\sqrt {y}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.243

19144

\begin{align*} a^{3} y^{\prime \prime \prime } y^{\prime \prime }&=\sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

29.674

19145

\begin{align*} y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

6.599

19146

\begin{align*} 2 \left (2 a -y\right ) y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.795

19147

\begin{align*} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3}&=0 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

1.681

19148

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.965

19149

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.415

19150

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.546

19151

\begin{align*} n \,x^{3} y^{\prime \prime }&=\left (y-y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.753

19152

\begin{align*} y^{2} \left (x^{2} y^{\prime \prime }-y^{\prime } x +y\right )&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.622

19153

\begin{align*} x^{2} y^{2} y^{\prime \prime }-3 y^{2} y^{\prime } x +4 y^{3}+x^{6}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.641

19154

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

38.043

19155

\begin{align*} x \left (x^{2} y^{\prime }+2 y x \right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 x y^{\prime } y+4 y^{2}-1&=0 \\ \end{align*}

[NONE]

0.291

19156

\begin{align*} x \left (y x +1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 y x +2\right ) y^{\prime }+y^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.435

19157

\begin{align*} a^{2} y^{\prime \prime }&=2 x \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.365

19158

\begin{align*} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y^{\prime } y&=4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.533

19159

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.167

19160

\begin{align*} 5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

4.155

19161

\begin{align*} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.200

19162

\begin{align*} {y^{\prime \prime }}^{2}+2 y^{\prime \prime } x -y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.381

19163

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } x -y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.765

19164

\begin{align*} 2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.226

19165

\begin{align*} y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}}&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.227

19166

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

78.434

19167

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y&=0 \\ \end{align*}

[_Lienard]

0.765

19168

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }&=2 y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

19169

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.218

19170

\begin{align*} -y+y^{\prime } x -y^{\prime \prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.056

19171

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime \prime }-y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.477

19172

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.245

19173

\begin{align*} y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x}&=x -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.534

19174

\begin{align*} -2 y x +\left (x^{2}+2\right ) y^{\prime }-2 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime \prime \prime }&=x^{4}+12 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.068

19175

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.052

19176

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.024

19177

\begin{align*} y^{\prime \prime }+\frac {y}{\ln \left (x \right ) x^{2}}&={\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.721

19178

\begin{align*} y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.263

19179

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.904

19180

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }&=y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8.439

19181

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.092

19182

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.084

19183

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.070

19184

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.067

19185

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

19186

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.115

19187

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.558

19188

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{x}+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

19189

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.163

19190

\begin{align*} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.246

19191

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.811

19192

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

19193

\begin{align*} y^{\prime \prime }-y&=\frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

19194

\begin{align*} y^{\prime \prime }-2 y&=4 x^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

19195

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.219

19196

\begin{align*} y^{\prime \prime }+9 y&=\ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.880

19197

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.471

19198

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.770

19199

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.002

19200

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.175