| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
-2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{3}+3 x \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
3.360 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.252 |
|
| \begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y&=0 \\
\end{align*} |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y&=0 \\
\end{align*} |
[_Lienard] |
✓ |
✓ |
✓ |
✗ |
4.400 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }-x^{3} y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.848 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=-3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✗ |
✗ |
1.014 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.411 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=z \\
z^{\prime }&=x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
3.391 |
|
| \begin{align*}
y^{\prime }&=y+z \\
z^{\prime }&=y+z+x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.731 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{z} \\
z^{\prime }&=\frac {y}{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.039 |
|
| \begin{align*}
y^{\prime }&=1-\frac {1}{z} \\
z^{\prime }&=\frac {1}{y-x} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.039 |
|
| \begin{align*}
y^{\prime }&=-z \\
z^{\prime }&=y \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
z \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
y^{\prime \prime }&=x +y^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.269 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_Emden, _modified]] |
✗ |
✗ |
✗ |
✗ |
26.372 |
|
| \begin{align*}
y^{\prime }&=\frac {z^{2}}{y} \\
z^{\prime }&=\frac {y^{2}}{z} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.041 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{z} \\
z^{\prime }&=\frac {z^{2}}{y} \\
\end{align*} | system_of_ODEs | ✗ | ✓ | ✓ | ✗ | 0.043 |
|
| \begin{align*}
x^{\prime }&=y+z-x \\
y^{\prime }&=x-y+z \\
z^{\prime }&=x+y-z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.740 |
|
| \begin{align*}
x^{\prime }+x+y&=t^{2} \\
y^{\prime }+y+z&=2 t \\
z^{\prime }+z&=t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
x^{\prime }+5 x+y&=7 \,{\mathrm e}^{t}-27 \\
-2 x+y^{\prime }+3 y&=-3 \,{\mathrm e}^{t}+12 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.421 |
|
| \begin{align*}
y^{\prime \prime }+z^{\prime }-2 z&={\mathrm e}^{2 x} \\
z^{\prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.066 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=x+{\mathrm e}^{t}+{\mathrm e}^{-t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.949 |
|
| \begin{align*}
y^{\prime }+\frac {2 z}{x^{2}}&=1 \\
z^{\prime }+y&=x \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.038 |
|
| \begin{align*}
t x^{\prime }-x-3 y&=t \\
t y^{\prime }-x+y&=0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.041 |
|
| \begin{align*}
t x^{\prime }+6 x-y-3 z&=0 \\
t y^{\prime }+23 x-6 y-9 z&=0 \\
t z^{\prime }+x+y-2 z&=0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.061 |
|
| \begin{align*}
x^{\prime }+5 x+y&={\mathrm e}^{t} \\
y^{\prime }-x+3 y&={\mathrm e}^{2 t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.784 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.066 |
|
| \begin{align*}
y^{\prime } y&={\mathrm e}^{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.472 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.403 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.099 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| \begin{align*}
y^{\prime } x +y&=y^{\prime } \sqrt {1-y^{2} x^{2}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
11.282 |
|
| \begin{align*}
y^{\prime } x&=y+y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.388 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.109 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 24.105 |
|
| \begin{align*}
y^{\prime } x +y&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.243 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
29.151 |
|
| \begin{align*}
\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime }&=y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
4.828 |
|
| \begin{align*}
1+y^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\arctan \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
x y^{\prime } y&=y-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.033 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
13.608 |
|
| \begin{align*}
y^{\prime } x&=\left (-2 x^{2}+1\right ) \tan \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.463 |
|
| \begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.697 |
|
| \begin{align*}
y^{\prime } \sin \left (y\right )&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.497 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.627 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.931 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.187 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.800 |
|
| \begin{align*}
y \ln \left (y\right )-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.182 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.736 |
|
| \begin{align*}
x \left (x^{2}-4\right ) y^{\prime }&=1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.753 |
|
| \begin{align*}
\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime }&=2 x^{2}+x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.159 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.729 |
|
| \begin{align*}
y^{\prime } x&=2 x^{2}+1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.392 |
|
| \begin{align*}
3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }&=0 \\
y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{8} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.380 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x} \cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.673 |
|
| \begin{align*}
x y^{\prime } y&=\left (x +1\right ) \left (1+y\right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.613 |
|
| \begin{align*}
y^{\prime }&=2 y x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.342 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.087 |
|
| \begin{align*}
v^{\prime }&=g -\frac {k v^{2}}{m} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 8.451 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
63.872 |
|
| \begin{align*}
x^{2} y^{\prime }-3 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
20.773 |
|
| \begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
28.765 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y+x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.281 |
|
| \begin{align*}
y^{\prime } x&=y+2 \,{\mathrm e}^{-\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.257 |
|
| \begin{align*}
x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.742 |
|
| \begin{align*}
y^{\prime } x&=2 x +3 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
8.058 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
45.141 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.634 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.873 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.930 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x -y+1\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.287 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+4}{x -y-6} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
42.797 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+4}{x +y-6} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
12.714 |
|
| \begin{align*}
2 x -2 y+\left (y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
28.251 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y-1}{x +4 y+2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
108.712 |
|
| \begin{align*}
2 x +3 y-1-4 \left (x +1\right ) y^{\prime }&=0 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 6.460 |
|
| \begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.762 |
|
| \begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.136 |
|
| \begin{align*}
y^{\prime }&=\frac {y-x y^{2}}{x +x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
13.611 |
|
| \begin{align*}
\left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
22.020 |
|
| \begin{align*}
\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✗ |
✓ |
✗ |
37.214 |
|
| \begin{align*}
y-x^{3}+\left (y^{3}+x \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
3.832 |
|
| \begin{align*}
y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.112 |
|
| \begin{align*}
\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.744 |
|
| \begin{align*}
\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime }&={\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
44.345 |
|