| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x_{1}^{\prime }&=x_{1}+8 x_{2}+5 x_{3}+3 x_{4} \\
x_{2}^{\prime }&=2 x_{1}+16 x_{2}+10 x_{3}+6 x_{4} \\
x_{3}^{\prime }&=5 x_{1}-14 x_{2}-11 x_{3}-3 x_{4} \\
x_{4}^{\prime }&=-x_{1}-8 x_{2}-5 x_{3}-3 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.983 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+2 x_{2}-2 x_{4} \\
x_{2}^{\prime }&=-x_{1}+3 x_{2}-x_{3}+x_{4} \\
x_{3}^{\prime }&=-2 x_{1}-2 x_{2}-4 x_{3}+2 x_{4} \\
x_{4}^{\prime }&=-7 x_{1}+x_{2}-7 x_{3}+3 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.702 |
|
| \begin{align*}
x_{1}^{\prime }&=-5 x_{1}-2 x_{2}-x_{3}+2 x_{4}+3 x_{5} \\
x_{2}^{\prime }&=-3 x_{2} \\
x_{3}^{\prime }&=x_{1}-x_{3}-x_{5} \\
x_{4}^{\prime }&=2 x_{1}+x_{2}-4 x_{4}-2 x_{5} \\
x_{5}^{\prime }&=-3 x_{1}-2 x_{2}-x_{3}+2 x_{4}+x_{5} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.455 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{2}-2 x_{3}+3 x_{4}+2 x_{5} \\
x_{2}^{\prime }&=8 x_{1}+6 x_{2}+4 x_{3}-8 x_{4}-16 x_{5} \\
x_{3}^{\prime }&=-8 x_{1}-8 x_{2}-6 x_{3}+8 x_{4}-16 x_{5} \\
x_{4}^{\prime }&=8 x_{1}+7 x_{2}+4 x_{3}-9 x_{4}-16 x_{5} \\
x_{5}^{\prime }&=-3 x_{1}-5 x_{2}-3 x_{3}+5 x_{4}+7 x_{5} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
4.635 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+2 x_{2}+x_{3} \\
x_{2}^{\prime }&=-2 x_{1}+2 x_{2}+2 x_{3} \\
x_{3}^{\prime }&=2 x_{1}-3 x_{2}-3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-4 x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}+3 x_{3} \\
x_{3}^{\prime }&=3 x_{1}-4 x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.821 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}-x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}-2 x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.887 |
|
| \begin{align*}
x_{1}^{\prime }&=-4 x_{1}+2 x_{2}-x_{3} \\
x_{2}^{\prime }&=-6 x_{1}-3 x_{3} \\
x_{3}^{\prime }&=\frac {8 x_{2}}{3}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
x_{1}^{\prime }&=-7 x_{1}+6 x_{2}-6 x_{3} \\
x_{2}^{\prime }&=-9 x_{1}+5 x_{2}-9 x_{3} \\
x_{3}^{\prime }&=-x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.946 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {4 x_{1}}{3}+\frac {4 x_{2}}{3}-\frac {11 x_{3}}{3} \\
x_{2}^{\prime }&=-\frac {16 x_{1}}{3}-\frac {x_{2}}{3}+\frac {14 x_{3}}{3} \\
x_{3}^{\prime }&=3 x_{1}-2 x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.870 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.668 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {3 x_{1}}{4}+\frac {29 x_{2}}{4}-\frac {11 x_{3}}{2} \\
x_{2}^{\prime }&=-\frac {3 x_{1}}{4}+\frac {3 x_{2}}{4}-\frac {5 x_{3}}{2} \\
x_{3}^{\prime }&=\frac {5 x_{1}}{4}+\frac {11 x_{2}}{4}-\frac {5 x_{3}}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}-x_{2}+4 x_{3}+2 x_{4} \\
x_{2}^{\prime }&=-19 x_{1}-6 x_{2}+6 x_{3}+16 x_{4} \\
x_{3}^{\prime }&=-9 x_{1}-x_{2}+x_{3}+6 x_{4} \\
x_{4}^{\prime }&=-5 x_{1}-3 x_{2}+6 x_{3}+5 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.562 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+6 x_{2}+2 x_{3}-2 x_{4} \\
x_{2}^{\prime }&=2 x_{1}-3 x_{2}-6 x_{3}+2 x_{4} \\
x_{3}^{\prime }&=-4 x_{1}+8 x_{2}+3 x_{3}-4 x_{4} \\
x_{4}^{\prime }&=2 x_{1}-2 x_{2}-6 x_{3}+x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.229 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-4 x_{2}+5 x_{3}+9 x_{4} \\
x_{2}^{\prime }&=-2 x_{1}-5 x_{2}+4 x_{3}+12 x_{4} \\
x_{3}^{\prime }&=-2 x_{1}-x_{3}+2 x_{4} \\
x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+3 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.290 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-5 x_{2}+8 x_{3}+14 x_{4} \\
x_{2}^{\prime }&=-6 x_{1}-8 x_{2}+11 x_{3}+27 x_{4} \\
x_{3}^{\prime }&=-6 x_{1}-4 x_{2}+7 x_{3}+17 x_{4} \\
x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+4 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.941 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{2}-2 x_{4} \\
x_{2}^{\prime }&=-\frac {x_{1}}{2}+x_{2}-3 x_{3}-\frac {5 x_{4}}{2} \\
x_{3}^{\prime }&=3 x_{2}-5 x_{3}-3 x_{4} \\
x_{4}^{\prime }&=x_{1}+3 x_{2}-3 x_{4} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 1.748 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=\frac {x_{1}}{2}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{2}-\frac {x_{2}}{4} \\
x_{2}^{\prime }&=x_{1}-\frac {x_{2}}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=\frac {x_{1}}{2}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-x_{2} \\
x_{2}^{\prime }&=3 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{2}+\frac {x_{2}}{2} \\
x_{2}^{\prime }&=2 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=-x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=-\frac {5 x_{1}}{2}+2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 4 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
x_{1}^{\prime }&=-4 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.120 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.120 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| \begin{align*}
x_{1}^{\prime }&=-k_{1} x_{1} \\
x_{2}^{\prime }&=k_{1} x_{1}-k_{2} x_{2} \\
x_{3}^{\prime }&=k_{2} x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= m_{0} \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2}+t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.759 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.551 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+\sin \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
x_{1}^{\prime }&=1-x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{2}+t \\
x_{3}^{\prime }&=-2 x_{1}-x_{2}+3 x_{3}+{\mathrm e}^{-t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {x_{3}}{2}+1 \\
x_{2}^{\prime }&=-x_{1}-2 x_{2}+x_{3}+t \\
x_{3}^{\prime }&=\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {3 x_{3}}{2}+11 \,{\mathrm e}^{-3 t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| \begin{align*}
x_{1}^{\prime }&=-4 x_{1}+x_{2}+3 x_{3}+3 t \\
x_{2}^{\prime }&=-2 x_{2} \\
x_{3}^{\prime }&=-2 x_{1}+x_{2}+x_{3}+3 \cos \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}+x_{2}+\frac {x_{3}}{2} \\
x_{2}^{\prime }&=x_{1}-x_{2}+x_{3}-\sin \left (t \right ) \\
x_{3}^{\prime }&=\frac {x_{1}}{2}+x_{2}-\frac {x_{3}}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}+1 \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}-x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
64.401 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-3 x_{2}-2 x_{3} \\
x_{2}^{\prime }&=8 x_{1}-5 x_{2}-4 x_{3} \\
x_{3}^{\prime }&=-4 x_{1}+3 x_{2}+3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| \begin{align*}
x_{1}^{\prime }&=-7 x_{1}+9 x_{2}-6 x_{3} \\
x_{2}^{\prime }&=-8 x_{1}+11 x_{2}-7 x_{3} \\
x_{3}^{\prime }&=-2 x_{1}+3 x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}+6 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-2 x_{1}-2 x_{2}-x_{3} \\
x_{3}^{\prime }&=-2 x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.521 |
|
| \begin{align*}
x_{1}^{\prime }&=-8 x_{1}-16 x_{2}-16 x_{3}-17 x_{4} \\
x_{2}^{\prime }&=-2 x_{1}-10 x_{2}-8 x_{3}-7 x_{4} \\
x_{3}^{\prime }&=-2 x_{1}-2 x_{3}-3 x_{4} \\
x_{4}^{\prime }&=6 x_{1}+14 x_{2}+14 x_{3}+14 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.635 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}-2 x_{3}+3 x_{4} \\
x_{2}^{\prime }&=2 x_{1}-\frac {3 x_{2}}{2}-x_{3}+\frac {7 x_{4}}{2} \\
x_{3}^{\prime }&=-x_{1}+\frac {x_{2}}{2}-\frac {3 x_{4}}{2} \\
x_{4}^{\prime }&=-2 x_{1}+\frac {3 x_{2}}{2}+3 x_{3}-\frac {7 x_{4}}{2} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.772 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 7 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -5 \\
x_{2} \left (0\right ) &= 7 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=6 x_{1}+4 x_{2}+6 x_{3} \\
x_{3}^{\prime }&=-5 x_{1}-2 x_{2}-4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= -2 \\
x_{3} \left (0\right ) &= 5 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2} \\
x_{2}^{\prime }&=-14 x_{1}-5 x_{2}+x_{3} \\
x_{3}^{\prime }&=15 x_{1}+5 x_{2}-2 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 5 \\
x_{2} \left (0\right ) &= 5 \\
x_{3} \left (0\right ) &= -4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.608 |
|
| \begin{align*}
x^{\prime }&=-2 y+x y \\
y^{\prime }&=x+4 x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| \begin{align*}
x^{\prime }&=1+5 y \\
y^{\prime }&=1-6 x^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.025 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime }&=-x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.550 |
|
| \begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
27.748 |
|
| \begin{align*}
y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.407 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.903 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.763 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.682 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=y-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.427 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.379 |
|
| \begin{align*}
3 y-7 x +7&=\left (3 x -7 y-3\right ) y^{\prime } \\
\end{align*} | [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 59.456 |
|
| \begin{align*}
\left (x +2 y+1\right ) y^{\prime }&=3+2 x +4 y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.704 |
|
| \begin{align*}
y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.528 |
|
| \begin{align*}
\left (x +y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.238 |
|
| \begin{align*}
y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }&=y \sin \left (x \right )+\cos \left (x \right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.353 |
|
| \begin{align*}
y^{\prime }&=2 y x -x^{3}+x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.762 |
|
| \begin{align*}
y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.267 |
|
| \begin{align*}
\left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.335 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.833 |
|
| \begin{align*}
y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y}&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.022 |
|
| \begin{align*}
\left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
1.475 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{3}+\frac {2}{3 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| \begin{align*}
y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.900 |
|
| \begin{align*}
y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| \begin{align*}
y^{\prime }&=y^{2}+\frac {1}{x^{4}} \\
\end{align*} |
[_rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
3.029 |
|
| \begin{align*}
\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }&=\left (1+y^{2}\right )^{{3}/{2}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
6.054 |
|
| \begin{align*}
y^{\prime } \left (x^{2}+y^{2}+3\right )&=2 x \left (2 y-\frac {x^{2}}{y}\right ) \\
\end{align*} | [_rational] | ✗ | ✓ | ✓ | ✗ | 3.823 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.273 |
|
| \begin{align*}
\left (x \left (x +y\right )+a^{2}\right ) y^{\prime }&=y \left (x +y\right )+b^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.234 |
|
| \begin{align*}
y^{\prime }&=k y+f \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.304 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
6.468 |
|
| \begin{align*}
\frac {y^{\prime } y+x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-y^{\prime } x}{y^{2}+x^{2}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact] |
✓ |
✓ |
✓ |
✗ |
4.214 |
|
| \begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.365 |
|
| \begin{align*}
\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
7.042 |
|
| \begin{align*}
\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.275 |
|