2.2.191 Problems 19001 to 19100

Table 2.395: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

19001

\begin{align*} x_{1}^{\prime }&=x_{1}+8 x_{2}+5 x_{3}+3 x_{4} \\ x_{2}^{\prime }&=2 x_{1}+16 x_{2}+10 x_{3}+6 x_{4} \\ x_{3}^{\prime }&=5 x_{1}-14 x_{2}-11 x_{3}-3 x_{4} \\ x_{4}^{\prime }&=-x_{1}-8 x_{2}-5 x_{3}-3 x_{4} \\ \end{align*}

system_of_ODEs

0.983

19002

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+2 x_{2}-2 x_{4} \\ x_{2}^{\prime }&=-x_{1}+3 x_{2}-x_{3}+x_{4} \\ x_{3}^{\prime }&=-2 x_{1}-2 x_{2}-4 x_{3}+2 x_{4} \\ x_{4}^{\prime }&=-7 x_{1}+x_{2}-7 x_{3}+3 x_{4} \\ \end{align*}

system_of_ODEs

1.702

19003

\begin{align*} x_{1}^{\prime }&=-5 x_{1}-2 x_{2}-x_{3}+2 x_{4}+3 x_{5} \\ x_{2}^{\prime }&=-3 x_{2} \\ x_{3}^{\prime }&=x_{1}-x_{3}-x_{5} \\ x_{4}^{\prime }&=2 x_{1}+x_{2}-4 x_{4}-2 x_{5} \\ x_{5}^{\prime }&=-3 x_{1}-2 x_{2}-x_{3}+2 x_{4}+x_{5} \\ \end{align*}

system_of_ODEs

1.455

19004

\begin{align*} x_{1}^{\prime }&=-3 x_{2}-2 x_{3}+3 x_{4}+2 x_{5} \\ x_{2}^{\prime }&=8 x_{1}+6 x_{2}+4 x_{3}-8 x_{4}-16 x_{5} \\ x_{3}^{\prime }&=-8 x_{1}-8 x_{2}-6 x_{3}+8 x_{4}-16 x_{5} \\ x_{4}^{\prime }&=8 x_{1}+7 x_{2}+4 x_{3}-9 x_{4}-16 x_{5} \\ x_{5}^{\prime }&=-3 x_{1}-5 x_{2}-3 x_{3}+5 x_{4}+7 x_{5} \\ \end{align*}

system_of_ODEs

4.635

19005

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+2 x_{2}+x_{3} \\ x_{2}^{\prime }&=-2 x_{1}+2 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-3 x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

1.001

19006

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+3 x_{3} \\ x_{3}^{\prime }&=3 x_{1}-4 x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.821

19007

\begin{align*} x_{1}^{\prime }&=-2 x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}-x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}-2 x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.887

19008

\begin{align*} x_{1}^{\prime }&=-4 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }&=-6 x_{1}-3 x_{3} \\ x_{3}^{\prime }&=\frac {8 x_{2}}{3}-2 x_{3} \\ \end{align*}

system_of_ODEs

1.008

19009

\begin{align*} x_{1}^{\prime }&=-7 x_{1}+6 x_{2}-6 x_{3} \\ x_{2}^{\prime }&=-9 x_{1}+5 x_{2}-9 x_{3} \\ x_{3}^{\prime }&=-x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.946

19010

\begin{align*} x_{1}^{\prime }&=\frac {4 x_{1}}{3}+\frac {4 x_{2}}{3}-\frac {11 x_{3}}{3} \\ x_{2}^{\prime }&=-\frac {16 x_{1}}{3}-\frac {x_{2}}{3}+\frac {14 x_{3}}{3} \\ x_{3}^{\prime }&=3 x_{1}-2 x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.870

19011

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.668

19012

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.573

19013

\begin{align*} x_{1}^{\prime }&=\frac {3 x_{1}}{4}+\frac {29 x_{2}}{4}-\frac {11 x_{3}}{2} \\ x_{2}^{\prime }&=-\frac {3 x_{1}}{4}+\frac {3 x_{2}}{4}-\frac {5 x_{3}}{2} \\ x_{3}^{\prime }&=\frac {5 x_{1}}{4}+\frac {11 x_{2}}{4}-\frac {5 x_{3}}{2} \\ \end{align*}

system_of_ODEs

0.846

19014

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{2}+4 x_{3}+2 x_{4} \\ x_{2}^{\prime }&=-19 x_{1}-6 x_{2}+6 x_{3}+16 x_{4} \\ x_{3}^{\prime }&=-9 x_{1}-x_{2}+x_{3}+6 x_{4} \\ x_{4}^{\prime }&=-5 x_{1}-3 x_{2}+6 x_{3}+5 x_{4} \\ \end{align*}

system_of_ODEs

2.562

19015

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+6 x_{2}+2 x_{3}-2 x_{4} \\ x_{2}^{\prime }&=2 x_{1}-3 x_{2}-6 x_{3}+2 x_{4} \\ x_{3}^{\prime }&=-4 x_{1}+8 x_{2}+3 x_{3}-4 x_{4} \\ x_{4}^{\prime }&=2 x_{1}-2 x_{2}-6 x_{3}+x_{4} \\ \end{align*}

system_of_ODEs

2.229

19016

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-4 x_{2}+5 x_{3}+9 x_{4} \\ x_{2}^{\prime }&=-2 x_{1}-5 x_{2}+4 x_{3}+12 x_{4} \\ x_{3}^{\prime }&=-2 x_{1}-x_{3}+2 x_{4} \\ x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+3 x_{4} \\ \end{align*}

system_of_ODEs

2.290

19017

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-5 x_{2}+8 x_{3}+14 x_{4} \\ x_{2}^{\prime }&=-6 x_{1}-8 x_{2}+11 x_{3}+27 x_{4} \\ x_{3}^{\prime }&=-6 x_{1}-4 x_{2}+7 x_{3}+17 x_{4} \\ x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+4 x_{4} \\ \end{align*}

system_of_ODEs

2.941

19018

\begin{align*} x_{1}^{\prime }&=3 x_{2}-2 x_{4} \\ x_{2}^{\prime }&=-\frac {x_{1}}{2}+x_{2}-3 x_{3}-\frac {5 x_{4}}{2} \\ x_{3}^{\prime }&=3 x_{2}-5 x_{3}-3 x_{4} \\ x_{4}^{\prime }&=x_{1}+3 x_{2}-3 x_{4} \\ \end{align*}

system_of_ODEs

1.748

19019

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.351

19020

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{2}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.332

19021

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.286

19022

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{2}-\frac {x_{2}}{4} \\ x_{2}^{\prime }&=x_{1}-\frac {x_{2}}{2} \\ \end{align*}

system_of_ODEs

0.273

19023

\begin{align*} x_{1}^{\prime }&=x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{2}-x_{2} \\ \end{align*}

system_of_ODEs

0.390

19024

\begin{align*} x_{1}^{\prime }&=-x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.349

19025

\begin{align*} x_{1}^{\prime }&=5 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.342

19026

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.463

19027

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.346

19028

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{2}+\frac {x_{2}}{2} \\ x_{2}^{\prime }&=2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.342

19029

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=-x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.692

19030

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=-\frac {5 x_{1}}{2}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.290

19031

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.656

19032

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.592

19033

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 4 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.408

19034

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.358

19035

\begin{align*} x_{1}^{\prime }&=-4 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.125

19036

\begin{align*} x_{1}^{\prime }&=5 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.120

19037

\begin{align*} x_{1}^{\prime }&=-x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.120

19038

\begin{align*} x_{1}^{\prime }&=x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.168

19039

\begin{align*} x_{1}^{\prime }&=-k_{1} x_{1} \\ x_{2}^{\prime }&=k_{1} x_{1}-k_{2} x_{2} \\ x_{3}^{\prime }&=k_{2} x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= m_{0} \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.638

19040

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}+t \\ \end{align*}

system_of_ODEs

0.759

19041

\begin{align*} x_{1}^{\prime }&=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.551

19042

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.770

19043

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.585

19044

\begin{align*} x_{1}^{\prime }&=1-x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{2}+t \\ x_{3}^{\prime }&=-2 x_{1}-x_{2}+3 x_{3}+{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.814

19045

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {x_{3}}{2}+1 \\ x_{2}^{\prime }&=-x_{1}-2 x_{2}+x_{3}+t \\ x_{3}^{\prime }&=\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {3 x_{3}}{2}+11 \,{\mathrm e}^{-3 t} \\ \end{align*}

system_of_ODEs

0.926

19046

\begin{align*} x_{1}^{\prime }&=-4 x_{1}+x_{2}+3 x_{3}+3 t \\ x_{2}^{\prime }&=-2 x_{2} \\ x_{3}^{\prime }&=-2 x_{1}+x_{2}+x_{3}+3 \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.964

19047

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{2}+x_{2}+\frac {x_{3}}{2} \\ x_{2}^{\prime }&=x_{1}-x_{2}+x_{3}-\sin \left (t \right ) \\ x_{3}^{\prime }&=\frac {x_{1}}{2}+x_{2}-\frac {x_{3}}{2} \\ \end{align*}

system_of_ODEs

0.996

19048

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+1 \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}-x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

64.401

19049

\begin{align*} x_{1}^{\prime }&=4 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.294

19050

\begin{align*} x_{1}^{\prime }&=3 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.254

19051

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.500

19052

\begin{align*} x_{1}^{\prime }&=5 x_{1}-3 x_{2}-2 x_{3} \\ x_{2}^{\prime }&=8 x_{1}-5 x_{2}-4 x_{3} \\ x_{3}^{\prime }&=-4 x_{1}+3 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.586

19053

\begin{align*} x_{1}^{\prime }&=-7 x_{1}+9 x_{2}-6 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+11 x_{2}-7 x_{3} \\ x_{3}^{\prime }&=-2 x_{1}+3 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.678

19054

\begin{align*} x_{1}^{\prime }&=5 x_{1}+6 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2}-x_{3} \\ x_{3}^{\prime }&=-2 x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.521

19055

\begin{align*} x_{1}^{\prime }&=-8 x_{1}-16 x_{2}-16 x_{3}-17 x_{4} \\ x_{2}^{\prime }&=-2 x_{1}-10 x_{2}-8 x_{3}-7 x_{4} \\ x_{3}^{\prime }&=-2 x_{1}-2 x_{3}-3 x_{4} \\ x_{4}^{\prime }&=6 x_{1}+14 x_{2}+14 x_{3}+14 x_{4} \\ \end{align*}

system_of_ODEs

1.635

19056

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}-2 x_{3}+3 x_{4} \\ x_{2}^{\prime }&=2 x_{1}-\frac {3 x_{2}}{2}-x_{3}+\frac {7 x_{4}}{2} \\ x_{3}^{\prime }&=-x_{1}+\frac {x_{2}}{2}-\frac {3 x_{4}}{2} \\ x_{4}^{\prime }&=-2 x_{1}+\frac {3 x_{2}}{2}+3 x_{3}-\frac {7 x_{4}}{2} \\ \end{align*}

system_of_ODEs

0.772

19057

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 7 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.332

19058

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -5 \\ x_{2} \left (0\right ) &= 7 \\ \end{align*}

system_of_ODEs

0.326

19059

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }&=6 x_{1}+4 x_{2}+6 x_{3} \\ x_{3}^{\prime }&=-5 x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ x_{3} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.581

19060

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2} \\ x_{2}^{\prime }&=-14 x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }&=15 x_{1}+5 x_{2}-2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 5 \\ x_{2} \left (0\right ) &= 5 \\ x_{3} \left (0\right ) &= -4 \\ \end{align*}

system_of_ODEs

0.608

19061

\begin{align*} x^{\prime }&=-2 y+x y \\ y^{\prime }&=x+4 x y \\ \end{align*}

system_of_ODEs

0.029

19062

\begin{align*} x^{\prime }&=1+5 y \\ y^{\prime }&=1-6 x^{2} \\ \end{align*}

system_of_ODEs

0.025

19063

\begin{align*} y^{\prime }&=2 \\ \end{align*}

[_quadrature]

0.370

19064

\begin{align*} y^{\prime }&=-x^{3} \\ \end{align*}

[_quadrature]

0.270

19065

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.660

19066

\begin{align*} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.550

19067

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

27.748

19068

\begin{align*} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\ \end{align*}

[_separable]

5.407

19069

\begin{align*} y^{\prime }&=\frac {2 x y}{y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.903

19070

\begin{align*} y^{\prime }&=\frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.763

19071

\begin{align*} x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.682

19072

\begin{align*} \left (x +y\right ) y^{\prime }&=y-x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.427

19073

\begin{align*} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

3.379

19074

\begin{align*} 3 y-7 x +7&=\left (3 x -7 y-3\right ) y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

59.456

19075

\begin{align*} \left (x +2 y+1\right ) y^{\prime }&=3+2 x +4 y \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.704

19076

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational]

2.528

19077

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

4.238

19078

\begin{align*} y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.692

19079

\begin{align*} \cos \left (x \right ) y^{\prime }&=y \sin \left (x \right )+\cos \left (x \right )^{2} \\ \end{align*}

[_linear]

2.353

19080

\begin{align*} y^{\prime }&=2 y x -x^{3}+x \\ \end{align*}

[_linear]

1.762

19081

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\ \end{align*}

[_linear]

1.267

19082

\begin{align*} \left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.335

19083

\begin{align*} y^{\prime } x +y&=x y^{2} \ln \left (x \right ) \\ \end{align*}

[_Bernoulli]

2.833

19084

\begin{align*} y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y}&=0 \\ \end{align*}

[_rational, _Bernoulli]

2.022

19085

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.475

19086

\begin{align*} x -y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.811

19087

\begin{align*} y^{\prime }&=\frac {y^{2}}{3}+\frac {2}{3 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

2.378

19088

\begin{align*} y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.900

19089

\begin{align*} y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\ \end{align*}

[_rational, _Riccati]

1.848

19090

\begin{align*} y^{\prime }&=y^{2}+\frac {1}{x^{4}} \\ \end{align*}

[_rational, [_Riccati, _special]]

3.029

19091

\begin{align*} \left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }&=\left (1+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.054

19092

\begin{align*} y^{\prime } \left (x^{2}+y^{2}+3\right )&=2 x \left (2 y-\frac {x^{2}}{y}\right ) \\ \end{align*}

[_rational]

3.823

19093

\begin{align*} y^{\prime }&=\frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.273

19094

\begin{align*} \left (x \left (x +y\right )+a^{2}\right ) y^{\prime }&=y \left (x +y\right )+b^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.234

19095

\begin{align*} y^{\prime }&=k y+f \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.304

19096

\begin{align*} y^{\prime }&=y^{2}-x^{2} \\ \end{align*}

[_Riccati]

6.468

19097

\begin{align*} \frac {y^{\prime } y+x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-y^{\prime } x}{y^{2}+x^{2}}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact]

4.214

19098

\begin{align*} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.365

19099

\begin{align*} \frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

7.042

19100

\begin{align*} \frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.275