2.2.190 Problems 18901 to 19000

Table 2.393: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18901

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.146

18902

\begin{align*} y^{\prime \prime }+4 y^{\prime }+29 y&={\mathrm e}^{-2 t} \sin \left (5 t \right ) \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.174

18903

\begin{align*} y^{\prime \prime }+w^{2} y&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.144

18904

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.154

18905

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.134

18906

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=18 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.114

18907

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.163

18908

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.151

18909

\begin{align*} y^{\prime \prime \prime \prime }-9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -3 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.202

18910

\begin{align*} y_{1}^{\prime }&=-5 y_{1}+y_{2} \\ y_{2}^{\prime }&=-9 y_{1}+5 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.169

18911

\begin{align*} y_{1}^{\prime }&=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }&=6 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.154

18912

\begin{align*} y_{1}^{\prime }&=4 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=5 y_{1}-4 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.175

18913

\begin{align*} y_{1}^{\prime }&=6 y_{2} \\ y_{2}^{\prime }&=-6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 5 \\ y_{2} \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.177

18914

\begin{align*} y_{1}^{\prime }&=-4 y_{1}-y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.152

18915

\begin{align*} y_{1}^{\prime }&=2 y_{1}-64 y_{2} \\ y_{2}^{\prime }&=y_{1}-14 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.155

18916

\begin{align*} y_{1}^{\prime }&=-4 y_{1}-y_{2}+2 \,{\mathrm e}^{t} \\ y_{2}^{\prime }&=y_{1}-2 y_{2}+\sin \left (2 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.204

18917

\begin{align*} y_{1}^{\prime }&=5 y_{1}-y_{2}+{\mathrm e}^{-t} \\ y_{2}^{\prime }&=y_{1}+3 y_{2}+2 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -3 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.167

18918

\begin{align*} y_{1}^{\prime }&=-y_{1}-5 y_{2}+3 \\ y_{2}^{\prime }&=y_{1}+3 y_{2}+5 \cos \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.184

18919

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2}+\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.180

18920

\begin{align*} y_{1}^{\prime }&=y_{2}-y_{3} \\ y_{2}^{\prime }&=y_{1}+y_{3}-{\mathrm e}^{-t} \\ y_{3}^{\prime }&=y_{1}+y_{2}+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 2 \\ y_{3} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.189

18921

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

18922

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.088

18923

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

18924

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.305

18925

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.718

18926

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

18927

\begin{align*} y^{\prime \prime }+y&=\operatorname {Heaviside}\left (t -3 \pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

18928

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.921

18929

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

18930

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.044

18931

\begin{align*} y^{\prime \prime }+4 y&=\operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.493

18932

\begin{align*} y^{\prime \prime \prime \prime }-y&=\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 12 \\ y^{\prime }\left (0\right ) &= 7 \\ y^{\prime \prime }\left (0\right ) &= 2 \\ y^{\prime \prime \prime }\left (0\right ) &= -9 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

1.263

18933

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.664

18934

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

5.059

18935

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

3.344

18936

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

3.477

18937

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\delta \left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

18938

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.264

18939

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.052

18940

\begin{align*} y^{\prime \prime }-y&=-20 \delta \left (t -3\right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.385

18941

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=\sin \left (t \right )+\delta \left (t -3 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.174

18942

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -4 \pi \right ) \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.312

18943

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -2 \pi \right ) \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.235

18944

\begin{align*} y^{\prime \prime }+4 y&=2 \delta \left (t -\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.250

18945

\begin{align*} y^{\prime \prime }+y&=\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.711

18946

\begin{align*} 2 y^{\prime \prime }+y^{\prime }+6 y&=\delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.805

18947

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.728

18948

\begin{align*} y^{\prime \prime \prime \prime }-y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.638

18949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2}+y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.620

18950

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.633

18951

\begin{align*} y^{\prime \prime }+y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.235

18952

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{5}+y&=k \delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.623

18953

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{10}+y&=k \delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

18954

\begin{align*} y^{\prime \prime }+w^{2} y&=g \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

18955

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&=\sin \left (\alpha t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.249

18956

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+17 y&=g \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.673

18957

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.122

18958

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=g \left (t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.218

18959

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (\alpha t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.184

18960

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=g \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.538

18961

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=g \left (t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.428

18962

\begin{align*} \frac {7 y^{\prime \prime }}{5}+y&=\operatorname {Heaviside}\left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.135

18963

\begin{align*} \frac {8 y^{\prime \prime }}{5}+y&=\operatorname {Heaviside}\left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.137

18964

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.653

18965

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.644

18966

\begin{align*} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y&=t \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.123

18967

\begin{align*} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y&=\cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.035

18968

\begin{align*} t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.043

18969

\begin{align*} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y&=\ln \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.033

18970

\begin{align*} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.033

18971

\begin{align*} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.034

18972

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.088

18973

\begin{align*} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y&=\cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.039

18974

\begin{align*} t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.032

18975

\begin{align*} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y&=\ln \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.036

18976

\begin{align*} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.030

18977

\begin{align*} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

18978

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.489

18979

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.550

18980

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.034

18981

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.036

18982

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.046

18983

\begin{align*} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.042

18984

\begin{align*} x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.131

18985

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.109

18986

\begin{align*} x_{1}^{\prime }&=-4 x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}-4 x_{3} \\ \end{align*}

system_of_ODEs

0.589

18987

\begin{align*} x_{1}^{\prime }&=x_{1}+4 x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=2 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.477

18988

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-4 x_{1}+2 x_{2}-2 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.566

18989

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }&=-2 x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }&=-2 x_{1}+4 x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.510

18990

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+6 x_{3} \\ x_{2}^{\prime }&=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }&=6 x_{1}+x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.607

18991

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.515

18992

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.734

18993

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.609

18994

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }&=2 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}+3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 11 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.619

18995

\begin{align*} x_{1}^{\prime }&=-x_{3} \\ x_{2}^{\prime }&=2 x_{1} \\ x_{3}^{\prime }&=-x_{1}+2 x_{2}+4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 7 \\ x_{2} \left (0\right ) &= 5 \\ x_{3} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.654

18996

\begin{align*} x_{1}^{\prime }&=x_{1}+3 x_{3} \\ x_{2}^{\prime }&=-2 x_{2} \\ x_{3}^{\prime }&=3 x_{1}-x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= -1 \\ x_{3} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.780

18997

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{2}-x_{2}-\frac {3 x_{3}}{2} \\ x_{2}^{\prime }&=\frac {3 x_{1}}{2}-2 x_{2}-\frac {3 x_{3}}{2} \\ x_{3}^{\prime }&=-2 x_{1}+2 x_{2}+x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.610

18998

\begin{align*} x_{1}^{\prime }&=x_{1}+5 x_{2}+3 x_{3}-5 x_{4} \\ x_{2}^{\prime }&=2 x_{1}+3 x_{2}+2 x_{3}-4 x_{4} \\ x_{3}^{\prime }&=-x_{2}-2 x_{3}+x_{4} \\ x_{4}^{\prime }&=2 x_{1}+4 x_{2}+2 x_{3}-5 x_{4} \\ \end{align*}

system_of_ODEs

0.959

18999

\begin{align*} x_{1}^{\prime }&=-5 x_{1}+x_{2}-4 x_{3}-x_{4} \\ x_{2}^{\prime }&=-3 x_{2} \\ x_{3}^{\prime }&=x_{1}-x_{2}+x_{4} \\ x_{4}^{\prime }&=2 x_{1}-x_{2}+2 x_{3}-2 x_{4} \\ \end{align*}

system_of_ODEs

0.966

19000

\begin{align*} x_{1}^{\prime }&=2 x_{1}+2 x_{2}-x_{4} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+2 x_{4} \\ x_{3}^{\prime }&=3 x_{3} \\ x_{4}^{\prime }&=-x_{1}+2 x_{2}+2 x_{4} \\ \end{align*}

system_of_ODEs

0.748