2.2.189 Problems 18801 to 18900

Table 2.391: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18801

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.989

18802

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.871

18803

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.726

18804

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.398

18805

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.628

18806

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.925

18807

\begin{align*} 2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.917

18808

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.003

18809

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -3 \\ \end{align*}

[[_Emden, _Fowler]]

1.310

18810

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler]]

0.792

18811

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.279

18812

\begin{align*} y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.921

18813

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.393

18814

\begin{align*} m y^{\prime \prime }+k y&=0 \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

2.944

18815

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

18816

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

18817

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=-3 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.300

18818

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.059

18819

\begin{align*} y^{\prime \prime }+9 y&=t^{2} {\mathrm e}^{3 t}+6 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

18820

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

18821

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

18822

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

18823

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

18824

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.367

18825

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=t^{2}+3 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.406

18826

\begin{align*} y^{\prime \prime }+y&=3 \sin \left (2 t \right )+\cos \left (2 t \right ) t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

18827

\begin{align*} u^{\prime \prime }+w_{0}^{2} u&=\cos \left (t w \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

18828

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=2 \sinh \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.780

18829

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cosh \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.479

18830

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

18831

\begin{align*} y^{\prime \prime }+4 y&=t^{2}+3 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.505

18832

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

18833

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

18834

\begin{align*} y^{\prime \prime }+4 y&=3 \sin \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.489

18835

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

18836

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.553

18837

\begin{align*} y^{\prime \prime }+y&=t \left (1+\sin \left (t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.475

18838

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&={\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.147

18839

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.684

18840

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 t^{2}+4 \,{\mathrm e}^{2 t} t +t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.843

18841

\begin{align*} y^{\prime \prime }+4 y&=t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.925

18842

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.948

18843

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

18844

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.205

18845

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.327

18846

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

18847

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.838

18848

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.231

18849

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.544

18850

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.992

18851

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=2 \cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.625

18852

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

18853

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (t w \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

18854

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (\frac {t}{4}\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

18855

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

18856

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (6 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.558

18857

\begin{align*} y^{\prime \prime }+y+\frac {y^{3}}{5}&=\cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.392

18858

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5}&=\cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.351

18859

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.271

18860

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.296

18861

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.357

18862

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.357

18863

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

18864

\begin{align*} y^{\prime \prime }+4 y&=3 \sec \left (2 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.748

18865

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

18866

\begin{align*} y^{\prime \prime }+4 y&=2 \csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.716

18867

\begin{align*} 4 y^{\prime \prime }+y&=2 \sec \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.931

18868

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

18869

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

18870

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

18871

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.694

18872

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.564

18873

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.888

18874

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=3 x^{{3}/{2}} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

18875

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.004

18876

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.799

18877

\begin{align*} t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.610

18878

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.181

18879

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

18880

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.287

18881

\begin{align*} y^{\prime \prime }+y&=g \left (t \right ) \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

18882

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.188

18883

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.191

18884

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.168

18885

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.102

18886

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.098

18887

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.105

18888

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{t} t^{2}+7 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.164

18889

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&=t^{2}+7 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.139

18890

\begin{align*} y^{\prime \prime }+4 y&=3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.182

18891

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\cos \left (2 t \right ) t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.207

18892

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.159

18893

\begin{align*} y^{\prime \prime \prime \prime }-6 y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 9 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.370

18894

\begin{align*} y^{\prime \prime }+16 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 9 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

18895

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.578

18896

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

18897

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.102

18898

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.121

18899

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.115

18900

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.090