2.2.188 Problems 18701 to 18800

Table 2.389: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18701

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-8 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.379

18702

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

system_of_ODEs

0.444

18703

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.393

18704

\begin{align*} x^{\prime }&=2 x-4 y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

system_of_ODEs

0.356

18705

\begin{align*} x^{\prime }&=-x+y+x^{2} \\ y^{\prime }&=y-2 x y \\ \end{align*}

system_of_ODEs

0.033

18706

\begin{align*} x^{\prime }&=2 y \,x^{2}-3 x^{2}-4 y \\ y^{\prime }&=-2 x \,y^{2}+6 x y \\ \end{align*}

system_of_ODEs

0.031

18707

\begin{align*} x^{\prime }&=3 x-x^{2} \\ y^{\prime }&=2 x y-3 y+2 \\ \end{align*}

system_of_ODEs

0.032

18708

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=y+2 x y \\ \end{align*}

system_of_ODEs

0.026

18709

\begin{align*} x^{\prime }&=2-y \\ y^{\prime }&=y-x^{2} \\ \end{align*}

system_of_ODEs

0.034

18710

\begin{align*} x^{\prime }&=x-x^{2}-x y \\ y^{\prime }&=\frac {y}{2}-\frac {y^{2}}{4}-\frac {3 x y}{4} \\ \end{align*}

system_of_ODEs

0.033

18711

\begin{align*} x^{\prime }&=-\left (x-y\right ) \left (1-x-y\right ) \\ y^{\prime }&=x \left (2+y\right ) \\ \end{align*}

system_of_ODEs

0.029

18712

\begin{align*} x^{\prime }&=y \left (2-x-y\right ) \\ y^{\prime }&=-x-y-2 x y \\ \end{align*}

system_of_ODEs

0.034

18713

\begin{align*} x^{\prime }&=\left (2+x\right ) \left (-x+y\right ) \\ y^{\prime }&=y-x^{2}-y^{2} \\ \end{align*}

system_of_ODEs

0.027

18714

\begin{align*} x^{\prime }&=-x+2 x y \\ y^{\prime }&=y-x^{2}-y^{2} \\ \end{align*}

system_of_ODEs

0.031

18715

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=x-\frac {x^{3}}{5}-\frac {y}{5} \\ \end{align*}

system_of_ODEs

0.025

18716

\begin{align*} x^{\prime }&=\frac {x \sqrt {6 x-9}}{3} \\ x \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

0.945

18717

\begin{align*} x^{\prime }&=x \left (1-x-y\right ) \\ y^{\prime }&=y \left (\frac {3}{4}-y-\frac {x}{2}\right ) \\ \end{align*}

system_of_ODEs

0.035

18718

\begin{align*} y^{\prime \prime }+t y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.152

18719

\begin{align*} y^{\prime \prime }+y^{\prime }+y+y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.247

18720

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

78.263

18721

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y&=0 \\ \end{align*}

[_Bessel]

0.338

18722

\begin{align*} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Van_der_Pol]

9.093

18723

\begin{align*} y^{\prime \prime }-t y&=\frac {1}{\pi } \\ \end{align*}

unknown

0.636

18724

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y&=d \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.928

18725

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.349

18726

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.579

18727

\begin{align*} y^{\prime \prime }+y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.455

18728

\begin{align*} y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.429

18729

\begin{align*} y^{\prime \prime }-y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

18730

\begin{align*} t y^{\prime \prime }+3 y&=t \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.530

18731

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-3 t y^{\prime }+4 y&=\sin \left (t \right ) \\ y \left (-2\right ) &= 2 \\ y^{\prime }\left (-2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.585

18732

\begin{align*} t \left (t -4\right ) y^{\prime \prime }+3 t y^{\prime }+4 y&=2 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

96.614

18733

\begin{align*} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right )&=0 \\ y \left (2\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.099

18734

\begin{align*} \left (x +3\right ) y^{\prime \prime }+y^{\prime } x +y \ln \left (x \right )&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.519

18735

\begin{align*} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y&=0 \\ y \left (3\right ) &= 1 \\ y^{\prime }\left (3\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.254

18736

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1}&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.294

18737

\begin{align*} y^{\prime \prime }-\frac {t}{y}&=\frac {1}{\pi } \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[NONE]

0.175

18738

\begin{align*} t^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.393

18739

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.451

18740

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.044

18741

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

18742

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.404

18743

\begin{align*} y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.912

18744

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

18745

\begin{align*} a y^{\prime \prime }+b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.231

18746

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.081

18747

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.078

18748

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.077

18749

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.091

18750

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.128

18751

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.088

18752

\begin{align*} x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.096

18753

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.126

18754

\begin{align*} y^{\prime \prime } x -\left (x +n \right ) y^{\prime }+n y&=0 \\ \end{align*}

[_Laguerre]

0.145

18755

\begin{align*} y^{\prime \prime }+a \left (y^{\prime } x +y\right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.127

18756

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18757

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18758

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

18759

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

18760

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

18761

\begin{align*} y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.279

18762

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.232

18763

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18764

\begin{align*} 6 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

18765

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

18766

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18767

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

18768

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.640

18769

\begin{align*} 4 y^{\prime \prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.022

18770

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

18771

\begin{align*} y^{\prime \prime }-4 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

18772

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

18773

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

18774

\begin{align*} y^{\prime \prime }-9 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

18775

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.213

18776

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.227

18777

\begin{align*} 9 y^{\prime \prime }-24 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.229

18778

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.955

18779

\begin{align*} 4 y^{\prime \prime }+9 y^{\prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.185

18780

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

18781

\begin{align*} y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

18782

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.284

18783

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.842

18784

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

18785

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.297

18786

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.389

18787

\begin{align*} 6 y^{\prime \prime }-5 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.309

18788

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.378

18789

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.388

18790

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.809

18791

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{3}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{3}\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.427

18792

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.411

18793

\begin{align*} y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.386

18794

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

18795

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.371

18796

\begin{align*} y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.316

18797

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.412

18798

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.815

18799

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.162

18800

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.753