2.2.180 Problems 17901 to 18000

Table 2.373: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17901

\begin{align*} \tan \left (y^{\prime }\right )&=x \\ \end{align*}

[_quadrature]

0.226

17902

\begin{align*} x^{2} y^{\prime } \cos \left (y\right )+1&=0 \\ y \left (\infty \right ) &= \frac {16 \pi }{3} \\ \end{align*}

[_separable]

11.265

17903

\begin{align*} x^{2} y^{\prime }+\cos \left (2 y\right )&=1 \\ y \left (\infty \right ) &= \frac {10 \pi }{3} \\ \end{align*}

[_separable]

7.723

17904

\begin{align*} x^{3} y^{\prime }-\sin \left (y\right )&=1 \\ y \left (\infty \right ) &= 5 \pi \\ \end{align*}

[_separable]

5.235

17905

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2}&=0 \\ y \left (-\infty \right ) &= \frac {7 \pi }{2} \\ \end{align*}

[_separable]

4.464

17906

\begin{align*} {\mathrm e}^{y}&={\mathrm e}^{4 y} y^{\prime }+1 \\ \end{align*}

[_quadrature]

2.496

17907

\begin{align*} \left (x +1\right ) y^{\prime }&=y-1 \\ \end{align*}

[_separable]

2.874

17908

\begin{align*} y^{\prime }&=2 x \left (\pi +y\right ) \\ \end{align*}

[_separable]

2.658

17909

\begin{align*} x^{2} y^{\prime }+\sin \left (2 y\right )&=1 \\ y \left (\infty \right ) &= \frac {11 \pi }{4} \\ \end{align*}

[_separable]

13.454

17910

\begin{align*} y^{\prime } x&=y+x \cos \left (\frac {y}{x}\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.636

17911

\begin{align*} x -y+y^{\prime } x&=0 \\ \end{align*}

[_linear]

3.153

17912

\begin{align*} y^{\prime } x&=y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

9.040

17913

\begin{align*} x^{2} y^{\prime }&=x^{2}-y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.802

17914

\begin{align*} y^{\prime } x&=y+\sqrt {y^{2}-x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.551

17915

\begin{align*} 2 x^{2} y^{\prime }&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.651

17916

\begin{align*} 4 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.116

17917

\begin{align*} y-x +\left (x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.965

17918

\begin{align*} x +y-2+\left (1-x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.802

17919

\begin{align*} 3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

73.326

17920

\begin{align*} x +y-2+\left (x -y+4\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.364

17921

\begin{align*} x +y+\left (x -y-2\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.073

17922

\begin{align*} 2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.908

17923

\begin{align*} 8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.076

17924

\begin{align*} x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.007

17925

\begin{align*} x +y+\left (x +y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.679

17926

\begin{align*} 2 x \left (x -y^{2}\right ) y^{\prime }+y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.296

17927

\begin{align*} 4 y^{6}+x^{3}&=6 x y^{5} y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.750

17928

\begin{align*} y \left (1+\sqrt {1+x^{2} y^{4}}\right )+2 y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

6.642

17929

\begin{align*} x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

6.821

17930

\begin{align*} 2 y+y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.665

17931

\begin{align*} x^{2}-y^{\prime } x&=y \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

3.454

17932

\begin{align*} y^{\prime }-2 y x&=2 x \,{\mathrm e}^{x^{2}} \\ \end{align*}

[_linear]

3.937

17933

\begin{align*} y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \\ \end{align*}

[_linear]

2.345

17934

\begin{align*} \cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=2 x \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

2.688

17935

\begin{align*} y^{\prime } x -2 y&=\cos \left (x \right ) x^{3} \\ \end{align*}

[_linear]

3.464

17936

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=\frac {1}{\cos \left (x \right )^{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

3.536

17937

\begin{align*} x \ln \left (x \right ) y^{\prime }-y&=3 x^{3} \ln \left (x \right )^{2} \\ \end{align*}

[_linear]

2.986

17938

\begin{align*} \left (2 x -y^{2}\right ) y^{\prime }&=2 y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.234

17939

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.931

17940

\begin{align*} y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

4.289

17941

\begin{align*} \left (\frac {{\mathrm e}^{-y^{2}}}{2}-y x \right ) y^{\prime }-1&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.807

17942

\begin{align*} y^{\prime }-{\mathrm e}^{x} y&=2 x \,{\mathrm e}^{{\mathrm e}^{x}} \\ \end{align*}

[_linear]

2.126

17943

\begin{align*} y^{\prime }+y x \,{\mathrm e}^{x}&={\mathrm e}^{{\mathrm e}^{x} \left (1-x \right )} \\ \end{align*}

[_linear]

2.121

17944

\begin{align*} y^{\prime }-y \ln \left (2\right )&=2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.838

17945

\begin{align*} y^{\prime }-y&=-2 \,{\mathrm e}^{-x} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.853

17946

\begin{align*} \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=-\frac {\sin \left (x \right )^{2}}{x^{2}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[_linear]

6.419

17947

\begin{align*} x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right )&=-1 \\ y \left (\infty \right ) &= 1 \\ \end{align*}

[_linear]

3.641

17948

\begin{align*} 2 y^{\prime } x -y&=1-\frac {2}{\sqrt {x}} \\ y \left (\infty \right ) &= -1 \\ \end{align*}

[_linear]

4.500

17949

\begin{align*} x^{2} y^{\prime }+y&=\left (x^{2}+1\right ) {\mathrm e}^{x} \\ y \left (-\infty \right ) &= 1 \\ \end{align*}

[_linear]

3.222

17950

\begin{align*} y^{\prime } x +y&=2 x \\ \end{align*}

[_linear]

4.099

17951

\begin{align*} \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=1 \\ \end{align*}

[_linear]

2.353

17952

\begin{align*} \cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=-\sin \left (2 x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[_linear]

3.397

17953

\begin{align*} y^{\prime }+2 y x&=2 x y^{2} \\ \end{align*}

[_separable]

4.627

17954

\begin{align*} 3 y^{2} y^{\prime } x -2 y^{3}&=x^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.913

17955

\begin{align*} \left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime }&=3 x^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.451

17956

\begin{align*} y^{\prime }+3 y x&=y \,{\mathrm e}^{x^{2}} \\ \end{align*}

[_separable]

3.823

17957

\begin{align*} y^{\prime }-2 \,{\mathrm e}^{x} y&=2 \sqrt {{\mathrm e}^{x} y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.202

17958

\begin{align*} 2 \ln \left (x \right ) y^{\prime }+\frac {y}{x}&=\frac {\cos \left (x \right )}{y} \\ \end{align*}

[_Bernoulli]

9.340

17959

\begin{align*} 2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=y^{3} \sin \left (x \right )^{2} \\ \end{align*}

[_Bernoulli]

9.736

17960

\begin{align*} \left (1+x^{2}+y^{2}\right ) y^{\prime }+y x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.076

17961

\begin{align*} y^{\prime }-y \cos \left (x \right )&=y^{2} \cos \left (x \right ) \\ \end{align*}

[_separable]

5.424

17962

\begin{align*} y^{\prime }-\tan \left (y\right )&=\frac {{\mathrm e}^{x}}{\cos \left (y\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.746

17963

\begin{align*} y^{\prime }&=y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.920

17964

\begin{align*} y^{\prime } \cos \left (y\right )+\sin \left (y\right )&=x +1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.975

17965

\begin{align*} y^{\prime } y+1&=\left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.957

17966

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

9.950

17967

\begin{align*} x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

26.503

17968

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.696

17969

\begin{align*} \frac {x}{\sqrt {y^{2}+x^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {y^{2}+x^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

8.332

17970

\begin{align*} 3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

8.410

17971

\begin{align*} 2 x +\frac {y^{2}+x^{2}}{x^{2} y}&=\frac {\left (y^{2}+x^{2}\right ) y^{\prime }}{x y^{2}} \\ \end{align*}

[[_homogeneous, ‘class D‘], _exact, _rational]

3.868

17972

\begin{align*} \frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

25.052

17973

\begin{align*} 3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.459

17974

\begin{align*} \frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

34.829

17975

\begin{align*} \sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

5.944

17976

\begin{align*} \frac {y+\sin \left (x \right ) \cos \left (y x \right )^{2}}{\cos \left (y x \right )^{2}}+\left (\frac {x}{\cos \left (y x \right )^{2}}+\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

18.510

17977

\begin{align*} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14.158

17978

\begin{align*} y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (y^{2}-a^{2}+x^{2}\right )&=0 \\ \end{align*}

[_exact, _rational]

3.354

17979

\begin{align*} 3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9.967

17980

\begin{align*} 1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3.002

17981

\begin{align*} x^{2}+y-y^{\prime } x&=0 \\ \end{align*}

[_linear]

1.876

17982

\begin{align*} x +y^{2}-2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.772

17983

\begin{align*} 2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.102

17984

\begin{align*} x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

[_Bernoulli]

3.089

17985

\begin{align*} x +\sin \left (x \right )+\sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.862

17986

\begin{align*} 2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

3.257

17987

\begin{align*} 3 y^{2}-x +\left (2 y^{3}-6 y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

12.795

17988

\begin{align*} x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\ \end{align*}

[_rational, _Bernoulli]

3.521

17989

\begin{align*} x -y x +\left (y+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

8.306

17990

\begin{align*} 4 {y^{\prime }}^{2}-9 x&=0 \\ \end{align*}

[_quadrature]

0.641

17991

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } y&=y^{2} \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

[_separable]

3.618

17992

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2}&=0 \\ \end{align*}

[_quadrature]

0.274

17993

\begin{align*} x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+2 y^{2}&=0 \\ \end{align*}

[_separable]

0.156

17994

\begin{align*} {y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+y x&=0 \\ \end{align*}

[_quadrature]

0.234

17995

\begin{align*} {y^{\prime }}^{3}+\left (2+x \right ) {\mathrm e}^{y}&=0 \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

58.571

17996

\begin{align*} {y^{\prime }}^{3}&=y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \\ \end{align*}

[_quadrature]

0.448

17997

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+{\mathrm e}^{x}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.737

17998

\begin{align*} {y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.977

17999

\begin{align*} y&={y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \\ \end{align*}

[_quadrature]

2.763

18000

\begin{align*} y^{\prime }&={\mathrm e}^{\frac {y^{\prime }}{y}} \\ \end{align*}

[_quadrature]

0.708