2.2.179 Problems 17801 to 17900

Table 2.371: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17801

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.797

17802

\begin{align*} x^{\prime \prime }+16 x&=0 \\ x \left (0\right ) &= -2 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.681

17803

\begin{align*} x^{\prime \prime }+256 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.040

17804

\begin{align*} x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= {\frac {1}{3}} \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.249

17805

\begin{align*} 10 x^{\prime \prime }+\frac {x}{10}&=0 \\ x \left (0\right ) &= -5 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.694

17806

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.383

17807

\begin{align*} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.491

17808

\begin{align*} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= -{\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.504

17809

\begin{align*} 4 x^{\prime \prime }+2 x^{\prime }+8 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.501

17810

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.474

17811

\begin{align*} x^{\prime \prime }+4 x^{\prime }+20 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.478

17812

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.859

17813

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.937

17814

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.919

17815

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.148

17816

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.605

17817

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

17818

\begin{align*} x^{\prime \prime }+x&=\cos \left (\frac {9 t}{10}\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.689

17819

\begin{align*} x^{\prime \prime }+x&=\cos \left (\frac {7 t}{10}\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

17820

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{10}+x&=3 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.780

17821

\begin{align*} x^{\prime }&=6 \\ y^{\prime }&=\cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.393

17822

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=1 \\ \end{align*}

system_of_ODEs

0.459

17823

\begin{align*} x^{\prime }&=0 \\ y^{\prime }&=-2 y \\ \end{align*}

system_of_ODEs

0.317

17824

\begin{align*} x^{\prime }&=x^{2} \\ y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.039

17825

\begin{align*} x_{1}^{\prime }&=-3 x_{1} \\ x_{2}^{\prime }&=1 \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.573

17826

\begin{align*} x_{1}^{\prime }&=-x_{1}+1 \\ x_{2}^{\prime }&=x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.550

17827

\begin{align*} x^{\prime }&=-3 x+6 y \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.458

17828

\begin{align*} x^{\prime }&=8 x-y \\ y^{\prime }&=x+6 y \\ \end{align*}

system_of_ODEs

0.364

17829

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.454

17830

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=-x+2 y \\ \end{align*}

system_of_ODEs

0.588

17831

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=1-x \\ \end{align*}

system_of_ODEs

0.615

17832

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x+\sin \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.716

17833

\begin{align*} x^{\prime \prime }-3 x^{\prime }+4 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

17834

\begin{align*} x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

17835

\begin{align*} x^{\prime \prime }+16 x&=t \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

17836

\begin{align*} x^{\prime \prime }+x&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

17837

\begin{align*} y^{\prime }&=y^{2}+x^{2} \\ \end{align*}

[[_Riccati, _special]]

45.764

17838

\begin{align*} y^{\prime }&=\frac {x}{y} \\ \end{align*}

[_separable]

6.083

17839

\begin{align*} y^{\prime }&=y+3 y^{{1}/{3}} \\ \end{align*}

[_quadrature]

2.167

17840

\begin{align*} y^{\prime }&=\sqrt {x -y} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

3.220

17841

\begin{align*} y^{\prime }&=\sqrt {x^{2}-y}-x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

19.487

17842

\begin{align*} y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

[_quadrature]

4.041

17843

\begin{align*} y^{\prime }&=\frac {1+y}{x -y} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.003

17844

\begin{align*} y^{\prime }&=\sin \left (y\right )-\cos \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

2.570

17845

\begin{align*} y^{\prime }&=1-\cot \left (y\right ) \\ \end{align*}

[_quadrature]

0.821

17846

\begin{align*} y^{\prime }&=\left (3 x -y\right )^{{1}/{3}}-1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.611

17847

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.350

17848

\begin{align*} y^{\prime } x +y&=\cos \left (x \right ) \\ \end{align*}

[_linear]

2.257

17849

\begin{align*} 2 y+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.523

17850

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=2 x \\ \end{align*}

[_separable]

2.634

17851

\begin{align*} y^{\prime }&=x +1 \\ \end{align*}

[_quadrature]

0.266

17852

\begin{align*} y^{\prime }&=x +y \\ \end{align*}

[[_linear, ‘class A‘]]

1.108

17853

\begin{align*} y^{\prime }&=y-x \\ \end{align*}

[[_linear, ‘class A‘]]

0.950

17854

\begin{align*} y^{\prime }&=\frac {x}{2}-y+\frac {3}{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.305

17855

\begin{align*} y^{\prime }&=\left (y-1\right )^{2} \\ \end{align*}

[_quadrature]

0.306

17856

\begin{align*} y^{\prime }&=\left (y-1\right ) x \\ \end{align*}

[_separable]

2.473

17857

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ \end{align*}

[_Riccati]

7.887

17858

\begin{align*} y^{\prime }&=\cos \left (x -y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.338

17859

\begin{align*} y^{\prime }&=y-x^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.980

17860

\begin{align*} y^{\prime }&=x^{2}+2 x -y \\ \end{align*}

[[_linear, ‘class A‘]]

1.491

17861

\begin{align*} y^{\prime }&=\frac {1+y}{x -1} \\ \end{align*}

[_separable]

2.644

17862

\begin{align*} y^{\prime }&=\frac {x +y}{x -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.539

17863

\begin{align*} y^{\prime }&=1-x \\ \end{align*}

[_quadrature]

0.270

17864

\begin{align*} y^{\prime }&=2 x -y \\ \end{align*}

[[_linear, ‘class A‘]]

1.216

17865

\begin{align*} y^{\prime }&=y+x^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.944

17866

\begin{align*} y^{\prime }&=-\frac {y}{x} \\ \end{align*}

[_separable]

3.033

17867

\begin{align*} y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.575

17868

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}

[_quadrature]

0.361

17869

\begin{align*} y^{\prime }&=y \\ \end{align*}

[_quadrature]

0.601

17870

\begin{align*} y^{\prime }&=y^{2} \\ \end{align*}

[_quadrature]

1.975

17871

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_Riccati]

8.106

17872

\begin{align*} y^{\prime }&=x +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

128.487

17873

\begin{align*} y^{\prime }&=x +y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.294

17874

\begin{align*} y^{\prime }&=2 y-2 x^{2}-3 \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

5.420

17875

\begin{align*} y^{\prime } x&=2 x -y \\ y \left (1\right ) &= 2 \\ \end{align*}

[_linear]

4.572

17876

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.691

17877

\begin{align*} x y^{\prime } y+1+y^{2}&=0 \\ \end{align*}

[_separable]

4.978

17878

\begin{align*} \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=0 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_separable]

3.645

17879

\begin{align*} 1+y^{2}&=y^{\prime } x \\ \end{align*}

[_separable]

3.924

17880

\begin{align*} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\ \end{align*}

[_separable]

4.747

17881

\begin{align*} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

10.059

17882

\begin{align*} {\mathrm e}^{-y} y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.662

17883

\begin{align*} y \ln \left (y\right )+y^{\prime } x&=1 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

7.550

17884

\begin{align*} y^{\prime }&=a^{x +y} \\ \end{align*}

[_separable]

3.168

17885

\begin{align*} {\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right )&=0 \\ \end{align*}

[_separable]

6.132

17886

\begin{align*} 2 x \sqrt {1-y^{2}}&=\left (x^{2}+1\right ) y^{\prime } \\ \end{align*}

[_separable]

5.039

17887

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )^{3}+\left ({\mathrm e}^{2 x}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

5.646

17888

\begin{align*} \sin \left (x \right ) y^{2}+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

6.369

17889

\begin{align*} y^{\prime }&=\sin \left (x -y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.352

17890

\begin{align*} y^{\prime }&=a x +b y+c \\ \end{align*}

[[_linear, ‘class A‘]]

1.692

17891

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

9.485

17892

\begin{align*} y^{\prime } x +y&=a \left (y x +1\right ) \\ y \left (\frac {1}{a}\right ) &= -a \\ \end{align*}

[_linear]

4.834

17893

\begin{align*} a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime }&=0 \\ y \left (a \right ) &= 0 \\ \end{align*}

[_separable]

10.022

17894

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

5.754

17895

\begin{align*} \cos \left (y^{\prime }\right )&=0 \\ \end{align*}

[_quadrature]

0.632

17896

\begin{align*} {\mathrm e}^{y^{\prime }}&=1 \\ \end{align*}

[_quadrature]

0.417

17897

\begin{align*} \sin \left (y^{\prime }\right )&=x \\ \end{align*}

[_quadrature]

0.329

17898

\begin{align*} \ln \left (y^{\prime }\right )&=x \\ \end{align*}

[_quadrature]

0.441

17899

\begin{align*} \tan \left (y^{\prime }\right )&=0 \\ \end{align*}

[_quadrature]

0.428

17900

\begin{align*} {\mathrm e}^{y^{\prime }}&=x \\ \end{align*}

[_quadrature]

0.296