2.2.181 Problems 18001 to 18100

Table 2.375: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18001

\begin{align*} x&=\ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \\ \end{align*}

[_quadrature]

1.247

18002

\begin{align*} x&={y^{\prime }}^{2}-2 y^{\prime }+2 \\ \end{align*}

[_quadrature]

0.145

18003

\begin{align*} y&=y^{\prime } \ln \left (y^{\prime }\right ) \\ \end{align*}

[_quadrature]

16.954

18004

\begin{align*} y&=\left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \\ \end{align*}

[_quadrature]

0.322

18005

\begin{align*} x {y^{\prime }}^{2}&={\mathrm e}^{\frac {1}{y^{\prime }}} \\ \end{align*}

[_quadrature]

0.290

18006

\begin{align*} x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=a \\ \end{align*}

[_quadrature]

0.613

18007

\begin{align*} y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}}&=a^{{2}/{5}} \\ \end{align*}

[_quadrature]

1.361

18008

\begin{align*} x&=\sin \left (y^{\prime }\right )+y^{\prime } \\ \end{align*}

[_quadrature]

0.175

18009

\begin{align*} y&=y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \\ \end{align*}

[_quadrature]

0.909

18010

\begin{align*} y&=\arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[_quadrature]

3.029

18011

\begin{align*} y&=2 y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.931

18012

\begin{align*} y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.476

18013

\begin{align*} y&=2 y^{\prime } x +\sin \left (y^{\prime }\right ) \\ \end{align*}

[_dAlembert]

0.621

18014

\begin{align*} y&=x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \\ \end{align*}

[_dAlembert]

4.249

18015

\begin{align*} y&=\frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }} \\ \end{align*}

[_dAlembert]

1.213

18016

\begin{align*} y&=y^{\prime } x +\frac {a}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.513

18017

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.158

18018

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y-y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.194

18019

\begin{align*} y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.692

18020

\begin{align*} x&=\frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.365

18021

\begin{align*} {\mathrm e}^{-x} y^{\prime }+y^{2}-2 \,{\mathrm e}^{x} y&=1-{\mathrm e}^{2 x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

155.714

18022

\begin{align*} y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

0.447

18023

\begin{align*} y^{\prime } x -y^{2}+\left (2 x +1\right ) y&=x^{2}+2 x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

1.987

18024

\begin{align*} x^{2} y^{\prime }&=1+y x +y^{2} x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.953

18025

\begin{align*} y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y^{\prime } y-4 x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.412

18026

\begin{align*} {y^{\prime }}^{2}-4 y&=0 \\ \end{align*}

[_quadrature]

0.477

18027

\begin{align*} {y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.417

18028

\begin{align*} {y^{\prime }}^{2}-y^{2}&=0 \\ \end{align*}

[_quadrature]

0.147

18029

\begin{align*} y^{\prime }&=y^{{2}/{3}}+a \\ \end{align*}

[_quadrature]

1.145

18030

\begin{align*} \left (y^{\prime } x +y\right )^{2}+3 x^{5} \left (y^{\prime } x -2 y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.483

18031

\begin{align*} y \left (y-2 y^{\prime } x \right )^{2}&=2 y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.513

18032

\begin{align*} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2}&=27 y-27 x \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.575

18033

\begin{align*} \left (y^{\prime }-1\right )^{2}&=y^{2} \\ \end{align*}

[_quadrature]

0.192

18034

\begin{align*} y&={y^{\prime }}^{2}-y^{\prime } x +x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.871

18035

\begin{align*} \left (y^{\prime } x +y\right )^{2}&=y^{2} y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

46.163

18036

\begin{align*} y^{2} {y^{\prime }}^{2}+y^{2}&=1 \\ \end{align*}

[_quadrature]

0.487

18037

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+{\mathrm e}^{x}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.247

18038

\begin{align*} 3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.669

18039

\begin{align*} y&=y^{\prime } x +\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.138

18040

\begin{align*} y^{\prime }&=\left (x -y\right )^{2}+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.154

18041

\begin{align*} x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right ) x \right ) y&=\cos \left (x \right ) \sin \left (x \right )-x \\ \end{align*}

[_linear]

6.846

18042

\begin{align*} y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\ \end{align*}

[_Bernoulli]

4.856

18043

\begin{align*} x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

57.711

18044

\begin{align*} 5 y x -4 y^{2}-6 x^{2}+\left (y^{2}-8 y x +\frac {5 x^{2}}{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.592

18045

\begin{align*} 3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

1.803

18046

\begin{align*} y-x y^{2} \ln \left (x \right )+y^{\prime } x&=0 \\ \end{align*}

[_Bernoulli]

2.821

18047

\begin{align*} 2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\ \end{align*}

[_linear]

2.426

18048

\begin{align*} y^{\prime }&=\frac {1}{2 x -y^{2}} \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

1.320

18049

\begin{align*} x^{2}+y^{\prime } x&=3 x +y^{\prime } \\ \end{align*}

[_quadrature]

0.257

18050

\begin{align*} x y^{\prime } y-y^{2}&=x^{4} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.076

18051

\begin{align*} \frac {1}{x^{2}-y x +y^{2}}&=\frac {y^{\prime }}{2 y^{2}-y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.040

18052

\begin{align*} \left (2 x -1\right ) y^{\prime }-2 y&=\frac {1-4 x}{x^{2}} \\ \end{align*}

[_linear]

1.643

18053

\begin{align*} x -y+3+\left (3 x +y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.713

18054

\begin{align*} y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right )&=\cos \left (\frac {x}{2}-\frac {y}{2}\right ) \\ \end{align*}

[_separable]

4.688

18055

\begin{align*} y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right )&=0 \\ \end{align*}

[_separable]

1.724

18056

\begin{align*} y^{2} y^{\prime } x -y^{3}&=\frac {x^{4}}{3} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.396

18057

\begin{align*} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5.276

18058

\begin{align*} x^{2}+y^{2}-x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.783

18059

\begin{align*} x -y+2+\left (x -y+3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.444

18060

\begin{align*} y+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.400

18061

\begin{align*} 2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.780

18062

\begin{align*} \left (x -1\right ) \left (y^{2}-y+1\right )&=\left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \\ \end{align*}

[_separable]

3.516

18063

\begin{align*} \left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.399

18064

\begin{align*} y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

7.294

18065

\begin{align*} y^{\prime }-1&={\mathrm e}^{x +2 y} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.182

18066

\begin{align*} 2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.148

18067

\begin{align*} x^{2} y^{n} y^{\prime }&=2 y^{\prime } x -y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.720

18068

\begin{align*} \left (3 x +3 y+a^{2}\right ) y^{\prime }&=4 x +4 y+b^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.576

18069

\begin{align*} x -y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.945

18070

\begin{align*} y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_Bernoulli]

3.214

18071

\begin{align*} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.931

18072

\begin{align*} y^{\prime }&=\sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.397

18073

\begin{align*} \left (5 x -7 y+1\right ) y^{\prime }+x +y-1&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.612

18074

\begin{align*} x +y+1+\left (2 x +2 y-1\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.046

18075

\begin{align*} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.350

18076

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational]

2.779

18077

\begin{align*} 4 x^{2} {y^{\prime }}^{2}-y^{2}&=x y^{3} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.420

18078

\begin{align*} y^{\prime }+x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

[_rational, _dAlembert]

1.190

18079

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right )+2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

18080

\begin{align*} x y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.163

18081

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.405

18082

\begin{align*} \left (x -1\right ) y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.589

18083

\begin{align*} {y^{\prime }}^{4}&=1 \\ \end{align*}

[_quadrature]

0.372

18084

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.980

18085

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

18086

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.301

18087

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.344

18088

\begin{align*} y^{\prime \prime \prime \prime }&=x \\ \end{align*}

[[_high_order, _quadrature]]

0.105

18089

\begin{align*} y^{\prime \prime \prime }&=x +\cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _quadrature]]

0.136

18090

\begin{align*} y^{\prime \prime } \left (2+x \right )^{5}&=1 \\ y \left (-1\right ) &= {\frac {1}{12}} \\ y^{\prime }\left (-1\right ) &= -{\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.520

18091

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.092

18092

\begin{align*} y^{\prime \prime }&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.892

18093

\begin{align*} y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.658

18094

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.625

18095

\begin{align*} y^{\prime \prime } x&=\left (2 x^{2}+1\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.528

18096

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.873

18097

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.339

18098

\begin{align*} y x&=y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \\ \end{align*}

[_separable]

15.637

18099

\begin{align*} 2 y^{\prime \prime }&=\frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \\ y \left (1\right ) &= \frac {\sqrt {2}}{5} \\ y^{\prime }\left (1\right ) &= \frac {\sqrt {2}}{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

0.490

18100

\begin{align*} y^{\prime \prime \prime }&=\sqrt {1-{y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.043