2.2.178 Problems 17701 to 17800

Table 2.369: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17701

\begin{align*} 6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.355

17702

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.388

17703

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.448

17704

\begin{align*} y^{\prime \prime }-y \cos \left (x \right )&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

17705

\begin{align*} x^{2} y^{\prime \prime }+6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.450

17706

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.158

17707

\begin{align*} \left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.604

17708

\begin{align*} \left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.670

17709

\begin{align*} 2 y^{\prime \prime } x -5 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.834

17710

\begin{align*} 5 y^{\prime \prime } x +8 y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.654

17711

\begin{align*} 9 y^{\prime \prime } x +14 y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.852

17712

\begin{align*} 7 y^{\prime \prime } x +10 y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.886

17713

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.687

17714

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.274

17715

\begin{align*} y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.715

17716

\begin{align*} y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.761

17717

\begin{align*} y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.233

17718

\begin{align*} y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.747

17719

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x -7 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.744

17720

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.493

17721

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.549

17722

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.302

17723

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-k^{2}+x^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.800

17724

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +k \left (1+k \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.648

17725

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.882

17726

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.717

17727

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.750

17728

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+k y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.934

17729

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.694

17730

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (16 x^{2}-25\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.871

17731

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

17732

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.212

17733

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

17734

\begin{align*} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.128

17735

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+t y&=0 \\ \end{align*}

[_Lienard]

0.124

17736

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.222

17737

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.262

17738

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

17739

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

17740

\begin{align*} y^{\prime \prime }-10 y^{\prime }+34 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

17741

\begin{align*} 2 y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

17742

\begin{align*} 15 y^{\prime \prime }-11 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.220

17743

\begin{align*} 20 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

17744

\begin{align*} 12 y^{\prime \prime }+8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

17745

\begin{align*} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.059

17746

\begin{align*} 9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.065

17747

\begin{align*} 9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.065

17748

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=-t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

17749

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=5 t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.153

17750

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=-3 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.246

17751

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

17752

\begin{align*} y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

17753

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.537

17754

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=-4 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

17755

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=3 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

17756

\begin{align*} y^{\prime \prime }+9 y^{\prime }+20 y&=-2 \,{\mathrm e}^{t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

17757

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=3 t^{2} {\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

17758

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.146

17759

\begin{align*} y^{\prime \prime \prime }-12 y^{\prime }-16 y&={\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.227

17760

\begin{align*} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y&={\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

1.471

17761

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y&=t^{2} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.174

17762

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.358

17763

\begin{align*} y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.377

17764

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.010

17765

\begin{align*} y^{\prime \prime }+25 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

27.691

17766

\begin{align*} y^{\prime \prime }-4 y&=t \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.504

17767

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.598

17768

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 t \right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.648

17769

\begin{align*} y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.598

17770

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

17771

\begin{align*} y^{\prime \prime }+y&=\csc \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

17772

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

17773

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

17774

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

17775

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.834

17776

\begin{align*} y^{\prime \prime }-2 t y^{\prime }+t^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.525

17777

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.213

17778

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

17779

\begin{align*} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.540

17780

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.326

17781

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.454

17782

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.092

17783

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.217

17784

\begin{align*} 5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.433

17785

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.375

17786

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=8 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.742

17787

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.527

17788

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=x \,{\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.603

17789

\begin{align*} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.454

17790

\begin{align*} 3 y^{\prime \prime } x +11 y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.833

17791

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.602

17792

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.872

17793

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.799

17794

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.785

17795

\begin{align*} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime }&=1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.684

17796

\begin{align*} 4 x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.671

17797

\begin{align*} 9 x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= -{\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.722

17798

\begin{align*} x^{\prime \prime }+64 x&=0 \\ x \left (0\right ) &= {\frac {3}{4}} \\ x^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.749

17799

\begin{align*} x^{\prime \prime }+100 x&=0 \\ x \left (0\right ) &= -{\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.825

17800

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.560