2.2.175 Problems 17401 to 17500

Table 2.363: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17401

\begin{align*} y^{\prime \prime }+100 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.503

17402

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

17403

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.459

17404

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.453

17405

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.455

17406

\begin{align*} y^{\prime \prime }+y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.454

17407

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.492

17408

\begin{align*} y^{\prime \prime }-y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.449

17409

\begin{align*} y^{\prime \prime }-y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

17410

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

17411

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.280

17412

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

17413

\begin{align*} 3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.543

17414

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.176

17415

\begin{align*} a y^{\prime \prime }+2 b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.920

17416

\begin{align*} y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

17417

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.216

17418

\begin{align*} y^{\prime \prime }-6 y^{\prime }-16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

17419

\begin{align*} y^{\prime \prime }-16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.287

17420

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

17421

\begin{align*} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.044

17422

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.040

17423

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

0.329

17424

\begin{align*} y^{\prime \prime }+y&=8 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.396

17425

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=-{\mathrm e}^{-9 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.371

17426

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=2 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

17427

\begin{align*} y^{\prime \prime }-y&=2 t -4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.374

17428

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.448

17429

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3-4 t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.148

17430

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

17431

\begin{align*} y^{\prime \prime }+4 y&=4 \cos \left (t \right )-\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.619

17432

\begin{align*} y^{\prime \prime }+4 y&=\cos \left (2 t \right )+t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

17433

\begin{align*} y^{\prime \prime }+4 y&=3 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

17434

\begin{align*} y^{\prime \prime }&=3 t^{4}-2 t \\ \end{align*}

[[_2nd_order, _quadrature]]

1.069

17435

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.711

17436

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.339

17437

\begin{align*} 5 y^{\prime \prime }+y^{\prime }-4 y&=-3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.378

17438

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=32 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

17439

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }-15 y&=75 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

17440

\begin{align*} y^{\prime \prime }+2 y^{\prime }+26 y&=-338 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

17441

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=-32 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.378

17442

\begin{align*} 8 y^{\prime \prime }+6 y^{\prime }+y&=5 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

17443

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=-256 t^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

17444

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=52 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.255

17445

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=25 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

17446

\begin{align*} y^{\prime \prime }-9 y&=54 t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

17447

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=-78 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

17448

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=-32 t^{2} \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.013

17449

\begin{align*} y^{\prime \prime }-y^{\prime }-20 y&=-2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

17450

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=-648 t^{2} {\mathrm e}^{5 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

17451

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=-2 t^{3} {\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

17452

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.307

17453

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.230

17454

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.287

17455

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.133

17456

\begin{align*} y^{\prime \prime }&=t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.508

17457

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=18 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.388

17458

\begin{align*} y^{\prime \prime }-y&=4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.509

17459

\begin{align*} y^{\prime \prime }-4 y&=32 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.496

17460

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-2 \\ y \left (0\right ) &= {\frac {2}{3}} \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.483

17461

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=3 t \\ y \left (0\right ) &= {\frac {23}{12}} \\ y^{\prime }\left (0\right ) &= -{\frac {3}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.484

17462

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=4 \\ y \left (0\right ) &= {\frac {5}{4}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.621

17463

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= -{\frac {5}{16}} \\ y^{\prime }\left (0\right ) &= {\frac {9}{16}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

17464

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&=-1 \\ y \left (0\right ) &= -{\frac {1}{25}} \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.572

17465

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.467

17466

\begin{align*} y^{\prime \prime }-y^{\prime }&=-3 t -4 \,{\mathrm e}^{2 t} t^{2} \\ y \left (0\right ) &= -{\frac {7}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.539

17467

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=2 t^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.304

17468

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.585

17469

\begin{align*} y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.914

17470

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.712

17471

\begin{align*} y^{\prime \prime }+9 \pi ^{2} y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

17.058

17472

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.222

17473

\begin{align*} y^{\prime }-4 y&=t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

2.164

17474

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.070

17475

\begin{align*} -y+y^{\prime }&={\mathrm e}^{4 t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.704

17476

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.485

17477

\begin{align*} y^{\prime }+4 y&=t \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.950

17478

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= a \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.878

17479

\begin{align*} x^{\prime \prime }+9 x&=\sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.660

17480

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+37 y&=\cos \left (3 t \right ) \\ y \left (0\right ) &= a \\ y^{\prime }\left (\pi \right ) &= a \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.731

17481

\begin{align*} y^{\prime \prime }+4 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.602

17482

\begin{align*} y^{\prime \prime }+16 y^{\prime }&=t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.126

17483

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&={\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.377

17484

\begin{align*} y^{\prime \prime }+16 y&=2 \cos \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

17485

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=2 t \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.433

17486

\begin{align*} y^{\prime \prime }+\frac {y}{4}&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

17487

\begin{align*} y^{\prime \prime }+16 y&=\csc \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.008

17488

\begin{align*} y^{\prime \prime }+16 y&=\cot \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.198

17489

\begin{align*} y^{\prime \prime }+2 y^{\prime }+50 y&={\mathrm e}^{-t} \csc \left (7 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.667

17490

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&={\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

17491

\begin{align*} y^{\prime \prime }-2 y^{\prime }+26 y&={\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.727

17492

\begin{align*} y^{\prime \prime }+12 y^{\prime }+37 y&={\mathrm e}^{-6 t} \csc \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

17493

\begin{align*} y^{\prime \prime }-6 y^{\prime }+34 y&={\mathrm e}^{3 t} \tan \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.670

17494

\begin{align*} y^{\prime \prime }-10 y^{\prime }+34 y&={\mathrm e}^{5 t} \cot \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

17495

\begin{align*} y^{\prime \prime }-12 y^{\prime }+37 y&={\mathrm e}^{6 t} \sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

17496

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 t} \sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

17497

\begin{align*} y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

17498

\begin{align*} y^{\prime \prime }-25 y&=\frac {1}{1-{\mathrm e}^{5 t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.606

17499

\begin{align*} y^{\prime \prime }-y&=2 \sinh \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17500

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.536