| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
1+y-t y^{\prime }&=\ln \left (y^{\prime }\right ) \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
3.855 |
|
| \begin{align*}
1+2 y-2 t y^{\prime }&=\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.919 |
|
| \begin{align*}
y&=-t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.450 |
|
| \begin{align*}
y&=t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
16.548 |
|
| \begin{align*}
y&=t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.464 |
|
| \begin{align*}
y&=t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.105 |
|
| \begin{align*}
t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
56.664 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-t^{2}}{t y} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.239 |
|
| \begin{align*}
y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.529 |
|
| \begin{align*}
y^{\prime }&=\frac {2 t^{5}}{5 y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| \begin{align*}
\cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.492 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{8 y}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{5 t}}{y^{4}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.085 |
|
| \begin{align*}
-\frac {1}{x^{5}}+\frac {1}{x^{3}}&=\left (2 y^{4}-6 y^{9}\right ) y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.839 |
|
| \begin{align*}
y^{\prime }&=\frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.562 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.441 |
|
| \begin{align*}
3 y+y^{\prime }&=-10 \sin \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.862 |
|
| \begin{align*}
3 t +\left (t -4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.580 |
|
| \begin{align*}
y-t +\left (t +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.075 |
|
| \begin{align*}
y-x +y^{\prime }&=0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.110 |
|
| \begin{align*}
y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
56.944 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}+t^{2}}{r t} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.421 |
|
| \begin{align*}
x^{\prime }&=\frac {5 t x}{t^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
17.622 |
|
| \begin{align*}
t^{2}-y+\left (y-t \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.967 |
|
| \begin{align*}
t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
5.155 |
|
| \begin{align*}
\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
3.624 |
|
| \begin{align*}
t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
3.305 |
|
| \begin{align*}
y+y^{\prime }&=5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
t y+y^{\prime }&=t \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.267 |
|
| \begin{align*}
x^{\prime }+\frac {x}{y}&=y^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| \begin{align*}
t r^{\prime }+r&=t \cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.809 |
|
| \begin{align*}
-y+y^{\prime }&=t y^{3} \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.954 |
|
| \begin{align*}
y+y^{\prime }&=\frac {{\mathrm e}^{t}}{y^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.254 |
|
| \begin{align*}
y&=t y^{\prime }+3 {y^{\prime }}^{4} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
2.931 |
|
| \begin{align*}
y-t y^{\prime }&=2 y^{2} \ln \left (t \right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.669 |
|
| \begin{align*}
y-t y^{\prime }&=-2 {y^{\prime }}^{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.428 |
|
| \begin{align*}
y-t y^{\prime }&=-4 {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
2 x -y-2+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.179 |
|
| \begin{align*}
\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime }&=0 \\
y \left (\pi \right ) &= \pi \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.441 |
|
| \begin{align*}
{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
2.464 |
|
| \begin{align*}
\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime }&=0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
13.180 |
|
| \begin{align*}
y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= \pi \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
3.588 |
|
| \begin{align*}
\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
3.727 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
22.806 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x -y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✗ |
✓ |
6.678 |
|
| \begin{align*}
y^{\prime }&=t y^{3} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
7.587 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{y^{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.886 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{t -2} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.456 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.731 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.736 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.239 |
|
| \begin{align*}
3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= {\frac {17}{3}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -22 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.383 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.562 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y^{\prime \prime }+49 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.138 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y&=0 \\
\end{align*} | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 0.108 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.104 |
|
| \begin{align*}
a y^{\prime \prime }+b y^{\prime }+c y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+a t y^{\prime }+b y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.713 |
|
| \begin{align*}
4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| \begin{align*}
t y^{\prime \prime }+2 y^{\prime }+16 t y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=0 \\
y \left (\pi \right ) &= 0 \\
y \left (2 \pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
8 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| \begin{align*}
y^{\prime \prime }+7 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.293 |
|
| \begin{align*}
4 y^{\prime \prime }+21 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
7 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.151 |
|
| \begin{align*}
3 y^{\prime \prime }-y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.316 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.599 |
|