2.2.174 Problems 17301 to 17400

Table 2.361: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17301

\begin{align*} 1+y-t y^{\prime }&=\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.855

17302

\begin{align*} 1+2 y-2 t y^{\prime }&=\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.919

17303

\begin{align*} y&=-t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \\ \end{align*}

[_dAlembert]

0.450

17304

\begin{align*} y&=t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \\ \end{align*}

[_dAlembert]

16.548

17305

\begin{align*} y&=t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \\ \end{align*}

[_linear]

2.464

17306

\begin{align*} y&=t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.105

17307

\begin{align*} t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

56.664

17308

\begin{align*} y^{\prime }&=\frac {y^{2}-t^{2}}{t y} \\ y \left (4\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.239

17309

\begin{align*} y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

10.529

17310

\begin{align*} y^{\prime }&=\frac {2 t^{5}}{5 y^{2}} \\ \end{align*}

[_separable]

3.283

17311

\begin{align*} \cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right )&=0 \\ \end{align*}

[_separable]

3.286

17312

\begin{align*} y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t} \\ \end{align*}

[_separable]

2.492

17313

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{8 y}}{t} \\ \end{align*}

[_separable]

2.441

17314

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{5 t}}{y^{4}} \\ \end{align*}

[_separable]

3.085

17315

\begin{align*} -\frac {1}{x^{5}}+\frac {1}{x^{3}}&=\left (2 y^{4}-6 y^{9}\right ) y^{\prime } \\ \end{align*}

[_separable]

2.839

17316

\begin{align*} y^{\prime }&=\frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \\ \end{align*}

[_separable]

2.562

17317

\begin{align*} y^{\prime }&=\frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \\ \end{align*}

[_separable]

3.441

17318

\begin{align*} 3 y+y^{\prime }&=-10 \sin \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.862

17319

\begin{align*} 3 t +\left (t -4 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

7.580

17320

\begin{align*} y-t +\left (t +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.075

17321

\begin{align*} y-x +y^{\prime }&=0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.110

17322

\begin{align*} y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

56.944

17323

\begin{align*} r^{\prime }&=\frac {r^{2}+t^{2}}{r t} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.421

17324

\begin{align*} x^{\prime }&=\frac {5 t x}{t^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17.622

17325

\begin{align*} t^{2}-y+\left (y-t \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.967

17326

\begin{align*} t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

5.155

17327

\begin{align*} \tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

3.624

17328

\begin{align*} t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.305

17329

\begin{align*} y+y^{\prime }&=5 \\ \end{align*}

[_quadrature]

0.585

17330

\begin{align*} t y+y^{\prime }&=t \\ \end{align*}

[_separable]

2.267

17331

\begin{align*} x^{\prime }+\frac {x}{y}&=y^{2} \\ \end{align*}

[_linear]

2.701

17332

\begin{align*} t r^{\prime }+r&=t \cos \left (t \right ) \\ \end{align*}

[_linear]

1.809

17333

\begin{align*} -y+y^{\prime }&=t y^{3} \\ \end{align*}

[_Bernoulli]

3.954

17334

\begin{align*} y+y^{\prime }&=\frac {{\mathrm e}^{t}}{y^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.254

17335

\begin{align*} y&=t y^{\prime }+3 {y^{\prime }}^{4} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.931

17336

\begin{align*} y-t y^{\prime }&=2 y^{2} \ln \left (t \right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _Bernoulli]

5.669

17337

\begin{align*} y-t y^{\prime }&=-2 {y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.428

17338

\begin{align*} y-t y^{\prime }&=-4 {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.252

17339

\begin{align*} 2 x -y-2+\left (-x +2 y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.179

17340

\begin{align*} \cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime }&=0 \\ y \left (\pi \right ) &= \pi \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

3.441

17341

\begin{align*} {\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.464

17342

\begin{align*} \sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime }&=0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_exact]

13.180

17343

\begin{align*} y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime }&=0 \\ y \left (0\right ) &= \pi \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.588

17344

\begin{align*} \frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_exact]

3.727

17345

\begin{align*} y^{\prime }&=y^{2}-x \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

22.806

17346

\begin{align*} y^{\prime }&=\sqrt {x -y} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

6.678

17347

\begin{align*} y^{\prime }&=t y^{3} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

7.587

17348

\begin{align*} y^{\prime }&=\frac {t}{y^{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

9.886

17349

\begin{align*} y^{\prime }&=-\frac {y}{t -2} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_separable]

2.456

17350

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.731

17351

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.278

17352

\begin{align*} 2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.736

17353

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.709

17354

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.385

17355

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.239

17356

\begin{align*} 3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= {\frac {17}{3}} \\ \end{align*}

[[_Emden, _Fowler]]

1.191

17357

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -22 \\ \end{align*}

[[_Emden, _Fowler]]

1.383

17358

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.611

17359

\begin{align*} y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

17360

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.427

17361

\begin{align*} y^{\prime \prime }+6 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.290

17362

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.562

17363

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.134

17364

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.131

17365

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

17366

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.135

17367

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.269

17368

\begin{align*} y^{\prime \prime }+49 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.138

17369

\begin{align*} t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.108

17370

\begin{align*} t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.107

17371

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.125

17372

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.104

17373

\begin{align*} a y^{\prime \prime }+b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.994

17374

\begin{align*} t^{2} y^{\prime \prime }+a t y^{\prime }+b y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.713

17375

\begin{align*} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.128

17376

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+16 t y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.125

17377

\begin{align*} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

17378

\begin{align*} y^{\prime \prime }+b y^{\prime }+c y&=0 \\ y \left (\pi \right ) &= 0 \\ y \left (2 \pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.643

17379

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.787

17380

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

17381

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.145

17382

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.214

17383

\begin{align*} y^{\prime \prime }+8 y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

17384

\begin{align*} y^{\prime \prime }+5 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

17385

\begin{align*} 8 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

17386

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.108

17387

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.132

17388

\begin{align*} y^{\prime \prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.263

17389

\begin{align*} y^{\prime \prime }+7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.293

17390

\begin{align*} 4 y^{\prime \prime }+21 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

17391

\begin{align*} 7 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.216

17392

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

17393

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.281

17394

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.151

17395

\begin{align*} 3 y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.316

17396

\begin{align*} y^{\prime \prime }+y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.351

17397

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.362

17398

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.406

17399

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.342

17400

\begin{align*} y^{\prime \prime }+36 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.599