2.2.176 Problems 17501 to 17600

Table 2.365: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17501

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

17502

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.580

17503

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {{\mathrm e}^{-3 t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.564

17504

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17505

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left ({\mathrm e}^{t}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.620

17506

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.658

17507

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \sqrt {-t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.586

17508

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 t} \ln \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

17509

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \arctan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

17510

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

17511

\begin{align*} y^{\prime \prime }+y&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.862

17512

\begin{align*} y^{\prime \prime }+9 y&=\tan \left (3 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.054

17513

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.628

17514

\begin{align*} y^{\prime \prime }+9 y&=\tan \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.714

17515

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

17516

\begin{align*} y^{\prime \prime }+16 y&=\tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.618

17517

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

17518

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \tan \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.027

17519

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right ) \tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.939

17520

\begin{align*} y^{\prime \prime }+9 y&=\frac {\csc \left (3 t \right )}{2} \\ y \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.584

17521

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.299

17522

\begin{align*} y^{\prime \prime }-16 y&=16 t \,{\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17523

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.915

17524

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right )+\tan \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.240

17525

\begin{align*} y^{\prime \prime }+9 y&=\csc \left (3 t \right ) \\ y \left (\frac {\pi }{12}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{12}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.385

17526

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=65 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

17527

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=\ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.287

17528

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.978

17529

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=2 \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.614

17530

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.606

17531

\begin{align*} y^{\prime \prime }+4 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.856

17532

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.125

17533

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=t^{3}+2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.135

17534

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+t y&=0 \\ \end{align*}

[_Lienard]

0.113

17535

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+t y&=-t \\ y \left (\pi \right ) &= -1 \\ y^{\prime }\left (\pi \right ) &= -\frac {1}{\pi } \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.010

17536

\begin{align*} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.137

17537

\begin{align*} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y&=16 t^{{3}/{2}} \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (2 \pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.087

17538

\begin{align*} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y&=-\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.748

17539

\begin{align*} \left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y&=t \\ y \left (\frac {\pi }{4}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.017

17540

\begin{align*} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.037

17541

\begin{align*} y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.060

17542

\begin{align*} 8 y^{\prime \prime \prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.055

17543

\begin{align*} y^{\prime \prime \prime \prime }+16 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.066

17544

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.065

17545

\begin{align*} 3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.062

17546

\begin{align*} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.075

17547

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.063

17548

\begin{align*} 5 y^{\prime \prime \prime }-15 y^{\prime }+11 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.095

17549

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.046

17550

\begin{align*} y^{\prime \prime \prime \prime }-9 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.058

17551

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.056

17552

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.075

17553

\begin{align*} y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

17554

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

17555

\begin{align*} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.063

17556

\begin{align*} y^{\left (5\right )}+4 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.070

17557

\begin{align*} y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.072

17558

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.075

17559

\begin{align*} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.075

17560

\begin{align*} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.089

17561

\begin{align*} y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.095

17562

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.075

17563

\begin{align*} y^{\prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.130

17564

\begin{align*} y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}

[[_high_order, _missing_x]]

0.108

17565

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 8 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.104

17566

\begin{align*} 24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.112

17567

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 3 \\ y^{\prime \prime }\left (0\right ) &= -7 \\ y^{\prime \prime \prime }\left (0\right ) &= 15 \\ \end{align*}

[[_high_order, _missing_x]]

0.106

17568

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ y^{\prime \prime }\left (0\right ) &= 4 \\ y^{\prime \prime \prime }\left (0\right ) &= -24 \\ \end{align*}

[[_high_order, _missing_x]]

0.101

17569

\begin{align*} 8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -14 \\ y^{\prime \prime }\left (0\right ) &= -14 \\ y^{\prime \prime \prime }\left (0\right ) &= 139 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= -{\frac {29}{4}} \\ \end{align*}

[[_high_order, _missing_x]]

0.148

17570

\begin{align*} 2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime }&=0 \\ y \left (0\right ) &= -3 \\ y^{\prime }\left (0\right ) &= {\frac {15}{2}} \\ y^{\prime \prime }\left (0\right ) &= {\frac {17}{4}} \\ y^{\prime \prime \prime }\left (0\right ) &= -{\frac {385}{8}} \\ y^{\prime \prime \prime \prime }\left (0\right ) &= {\frac {1217}{16}} \\ \end{align*}

[[_high_order, _missing_x]]

0.124

17571

\begin{align*} y^{\left (5\right )}+8 y^{\prime \prime \prime \prime }&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 4 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 48 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.104

17572

\begin{align*} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 16 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= 0 \\ y^{\left (5\right )}\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.150

17573

\begin{align*} y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.069

17574

\begin{align*} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.082

17575

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.137

17576

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ y^{\prime \prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_high_order, _missing_x]]

0.159

17577

\begin{align*} \frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10}&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.730

17578

\begin{align*} 2 y y^{\prime \prime }+y^{2}&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.725

17579

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.106

17580

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=1 \\ \end{align*}

[[_high_order, _missing_x]]

0.119

17581

\begin{align*} y^{\left (5\right )}-y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x]]

0.144

17582

\begin{align*} y^{\prime \prime \prime \prime }+9 y^{\prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x]]

0.141

17583

\begin{align*} y^{\prime \prime \prime \prime }+9 y^{\prime \prime }&=9 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_high_order, _missing_y]]

0.151

17584

\begin{align*} y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y&=t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.767

17585

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.273

17586

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y&=108 t \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.161

17587

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y&=-111 \,{\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.146

17588

\begin{align*} y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y&=153 \,{\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.167

17589

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=\tan \left (2 t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.583

17590

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=\sec \left (2 t \right ) \tan \left (2 t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.474

17591

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=\sec \left (2 t \right )^{2} \\ \end{align*}

[[_high_order, _missing_y]]

0.543

17592

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=\tan \left (2 t \right )^{2} \\ \end{align*}

[[_high_order, _missing_y]]

0.569

17593

\begin{align*} y^{\prime \prime \prime }+9 y^{\prime }&=\sec \left (3 t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

1.036

17594

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=-\sec \left (t \right ) \tan \left (t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.386

17595

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=\sec \left (2 t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.417

17596

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=-\frac {1}{t^{2}}-\frac {2}{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.272

17597

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.283

17598

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y&={\mathrm e}^{4 t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.140

17599

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y&={\mathrm e}^{-3 t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.135

17600

\begin{align*} y^{\prime \prime \prime }-13 y^{\prime }+12 y&=\cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.148