| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\left (y-x \right ) y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.292 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.857 |
|
| \begin{align*}
\left (2 y x +2 x^{2}\right ) y^{\prime }&=x^{2}+2 y x +2 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
49.898 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x^{2} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.631 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {2 x +y-3}-2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.211 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {2 x +y-3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.326 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}+y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.912 |
|
| \begin{align*}
y^{\prime }+3 y&=\frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.111 |
|
| \begin{align*}
y^{\prime }&=\left (x -y+3\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.419 |
|
| \begin{align*}
y^{\prime }+2 x&=2 \sqrt {y+x^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
2.420 |
|
| \begin{align*}
y^{\prime } \cos \left (y\right )&={\mathrm e}^{-x}-\sin \left (y\right ) \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| \begin{align*}
y^{\prime }&=x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.352 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y}-\frac {y}{2 x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.503 |
|
| \begin{align*}
{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 7.015 |
|
| \begin{align*}
2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.777 |
|
| \begin{align*}
2-2 x +3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.861 |
|
| \begin{align*}
1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.066 |
|
| \begin{align*}
4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
76.194 |
|
| \begin{align*}
1+\ln \left (y x \right )+\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact] |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| \begin{align*}
1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.367 |
|
| \begin{align*}
{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_exponential_symmetries], _exact] |
✓ |
✓ |
✓ |
✓ |
1.410 |
|
| \begin{align*}
1+y^{4}+x y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.714 |
|
| \begin{align*}
y+\left (y^{4}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.233 |
|
| \begin{align*}
\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.112 |
|
| \begin{align*}
1+\left (1-x \tan \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
1.457 |
|
| \begin{align*}
3 y+3 y^{2}+\left (2 x +4 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.245 |
|
| \begin{align*}
2 x \left (1+y\right )-y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| \begin{align*}
2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
0.667 |
|
| \begin{align*}
4 y x +\left (3 x^{2}+5 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
2.833 |
|
| \begin{align*}
6+12 y^{2} x^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.451 |
|
| \begin{align*}
y^{\prime } x&=2 y-6 x^{3} \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.056 |
|
| \begin{align*}
y^{\prime } x&=2 y^{2}-6 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.467 |
|
| \begin{align*}
4 y^{2}-y^{2} x^{2}+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| \begin{align*}
x^{2} y^{\prime }-\sqrt {x}&=3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
x y^{\prime } y-y^{2}&=\sqrt {y^{2} x^{2}+x^{4}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.956 |
|
| \begin{align*}
y^{\prime }&=x^{2}-2 y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.224 |
|
| \begin{align*}
4 y x -6+x^{2} y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.076 |
|
| \begin{align*}
x y^{2}-6+x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.586 |
|
| \begin{align*}
x^{3}+y^{3}+y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.957 |
|
| \begin{align*}
3 y-x^{3}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.896 |
|
| \begin{align*}
1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.993 |
|
| \begin{align*}
3 x y^{3}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.375 |
|
| \begin{align*}
2+2 x^{2}-2 y x +\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.074 |
|
| \begin{align*}
\left (y^{2}-4\right ) y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
\left (x^{2}-4\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y x -3 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.964 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y}{x +1}-y^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.465 |
|
| \begin{align*}
\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
4.548 |
|
| \begin{align*}
\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.796 |
|
| \begin{align*}
\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
x y^{\prime } y&=2 y^{2}+2 x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.694 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{x +2 y+3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.412 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.199 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.143 |
|
| \begin{align*}
y^{\prime }&=x y^{2}+3 y^{2}+x +3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| \begin{align*}
1-\left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| \begin{align*}
\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| \begin{align*}
y^{2}+1-y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.729 |
|
| \begin{align*}
y^{\prime }-3 y&=12 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.111 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
7.285 |
|
| \begin{align*}
\left (2+x \right ) y^{\prime }-x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
x y^{3} y^{\prime }&=y^{4}-x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.956 |
|
| \begin{align*}
y^{\prime }&=4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.638 |
|
| \begin{align*}
2 y-6 x +\left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.253 |
|
| \begin{align*}
x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime } y-x y^{2}&=6 x \,{\mathrm e}^{4 x^{2}} \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.828 |
|
| \begin{align*}
\left (3-x +y\right )^{2} \left (y^{\prime }-1\right )&=1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.046 |
|
| \begin{align*}
x +y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.877 |
|
| \begin{align*}
y^{2}-y^{2} \cos \left (x \right )+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.795 |
|
| \begin{align*}
2 y+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.597 |
|
| \begin{align*}
y^{\prime }+2 x&=\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.967 |
|
| \begin{align*}
y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
2.520 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.516 |
|
| \begin{align*}
y^{\prime }&=\tan \left (6 x +3 y+1\right )-2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.962 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.205 |
|
| \begin{align*}
y^{\prime }&=x \left (6 y+{\mathrm e}^{x^{2}}\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.720 |
|
| \begin{align*}
x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.817 |
|
| \begin{align*}
x^{2} y^{\prime }+3 y x&=6 \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.922 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| \begin{align*}
y^{\prime \prime } x&=2 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }-2 x^{2} y^{\prime } \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.537 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
y^{\prime \prime }&=4 x \sqrt {y^{\prime }} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
1.466 |
|
| \begin{align*}
y y^{\prime \prime }&=-{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
7.616 |
|
| \begin{align*}
y^{\prime \prime } x&=-y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
y^{\prime \prime } x -{y^{\prime }}^{2}&=6 x^{5} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.873 |
|
| \begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime }-6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| \begin{align*}
\left (y-3\right ) y^{\prime \prime }&=2 {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.242 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime \prime }&=y^{\prime \prime } \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.040 |
|
| \begin{align*}
x y^{\prime \prime \prime }+2 y^{\prime \prime }&=6 x \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.164 |
|
| \begin{align*}
y^{\prime \prime \prime }&=2 \sqrt {y^{\prime \prime }} \\
\end{align*} | [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] | ✓ | ✓ | ✓ | ✓ | 0.661 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=-2 y^{\prime \prime \prime } \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.049 |
|