2.2.165 Problems 16401 to 16500

Table 2.343: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16401

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 15 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.310

16402

\begin{align*} 3 y y^{\prime \prime }&=2 {y^{\prime }}^{2} \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.371

16403

\begin{align*} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.556

16404

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.671

16405

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=2 y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.945

16406

\begin{align*} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.559

16407

\begin{align*} y^{\prime \prime }&=4 x \sqrt {y^{\prime }} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.404

16408

\begin{align*} y^{\prime } y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.435

16409

\begin{align*} y^{\prime \prime } x&=-y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.546

16410

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=6 x^{5} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.860

16411

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.375

16412

\begin{align*} y y^{\prime \prime }&=2 {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.223

16413

\begin{align*} \left (y-3\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.240

16414

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.901

16415

\begin{align*} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }-2\right ) \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.263

16416

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.204

16417

\begin{align*} y^{\prime \prime } x&=2 y^{\prime } \\ y \left (-1\right ) &= 4 \\ y^{\prime }\left (-1\right ) &= 12 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.887

16418

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.921

16419

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.216

16420

\begin{align*} y^{\prime \prime \prime }&=y^{\prime \prime } \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= 5 \\ y^{\prime \prime }\left (0\right ) &= 2 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.078

16421

\begin{align*} x y^{\prime \prime \prime }+2 y^{\prime \prime }&=6 x \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= 4 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.194

16422

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=6 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.054

16423

\begin{align*} 2 x y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= \sqrt {3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.554

16424

\begin{align*} 3 y y^{\prime \prime }&=2 {y^{\prime }}^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 9 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.349

16425

\begin{align*} y y^{\prime \prime }+2 {y^{\prime }}^{2}&=3 y^{\prime } y \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= {\frac {3}{4}} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.668

16426

\begin{align*} y^{\prime \prime }&=-{\mathrm e}^{-y} y^{\prime } \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.070

16427

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.345

16428

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.264

16429

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.332

16430

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\ y \left (1\right ) &= -{\frac {1}{4}} \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.492

16431

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.632

16432

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.564

16433

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.591

16434

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.582

16435

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.147

16436

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.309

16437

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }&=4 y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.231

16438

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+4 y&=y^{3} \\ \end{align*}

[NONE]

0.151

16439

\begin{align*} y^{\prime } x +3 y&={\mathrm e}^{2 x} \\ \end{align*}

[_linear]

1.715

16440

\begin{align*} y^{\prime \prime \prime }+y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

16441

\begin{align*} \left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.445

16442

\begin{align*} y^{\prime \prime }&=2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.422

16443

\begin{align*} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.141

16444

\begin{align*} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }&=y \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.035

16445

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.106

16446

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.109

16447

\begin{align*} x^{2} y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.088

16448

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.085

16449

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.086

16450

\begin{align*} y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

16451

\begin{align*} \left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.097

16452

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.096

16453

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

16454

\begin{align*} y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.098

16455

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.106

16456

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

16457

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.114

16458

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.167

16459

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=9 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.215

16460

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

16461

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.199

16462

\begin{align*} x^{2} y^{\prime \prime }-20 y&=27 x^{5} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.211

16463

\begin{align*} y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.248

16464

\begin{align*} \left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.217

16465

\begin{align*} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.049

16466

\begin{align*} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y&={\mathrm e}^{3 x} \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.128

16467

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.058

16468

\begin{align*} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.035

16469

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.334

16470

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.114

16471

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.308

16472

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16473

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.231

16474

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.294

16475

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler]]

1.175

16476

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ y \left (\sqrt {\pi }\right ) &= 3 \\ y^{\prime }\left (\sqrt {\pi }\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.165

16477

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.309

16478

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.987

16479

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.950

16480

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 8 \\ y^{\prime \prime }\left (0\right ) &= 4 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.099

16481

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.105

16482

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.859

16483

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.320

16484

\begin{align*} y^{\prime \prime }-10 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -24 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.325

16485

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.851

16486

\begin{align*} y^{\prime \prime \prime }-9 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.040

16487

\begin{align*} y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

16488

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

16489

\begin{align*} y^{\prime \prime }+2 y^{\prime }-24 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

16490

\begin{align*} y^{\prime \prime }-25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.094

16491

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.779

16492

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.019

16493

\begin{align*} 3 y^{\prime \prime }+7 y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

16494

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.339

16495

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.319

16496

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 19 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.322

16497

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.359

16498

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.634

16499

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.804

16500

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252