2.2.163 Problems 16201 to 16300

Table 2.339: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16201

\begin{align*} y^{\prime }-y^{2}&=x \\ \end{align*}

[[_Riccati, _special]]

2.532

16202

\begin{align*} y^{3}-25 y+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

1.139

16203

\begin{align*} \left (x -2\right ) y^{\prime }&=3+y \\ \end{align*}

[_separable]

2.239

16204

\begin{align*} \left (y-2\right ) y^{\prime }&=x -3 \\ \end{align*}

[_separable]

3.777

16205

\begin{align*} y^{\prime }+2 y-y^{2}&=-2 \\ \end{align*}

[_quadrature]

0.307

16206

\begin{align*} y^{\prime }+\left (8-x \right ) y-y^{2}&=-8 x \\ \end{align*}

[_Riccati]

2.500

16207

\begin{align*} y^{\prime }&=2 \sqrt {y} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_quadrature]

1.303

16208

\begin{align*} y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\ \end{align*}

[_separable]

3.398

16209

\begin{align*} y^{\prime }&=3 x -y \sin \left (x \right ) \\ \end{align*}

[_linear]

2.232

16210

\begin{align*} y^{\prime } x&=\left (x -y\right )^{2} \\ \end{align*}

[_rational, _Riccati]

72.385

16211

\begin{align*} y^{\prime }&=\sqrt {x^{2}+1} \\ \end{align*}

[_quadrature]

0.214

16212

\begin{align*} y^{\prime }+4 y&=8 \\ \end{align*}

[_quadrature]

0.366

16213

\begin{align*} y^{\prime }+y x&=4 x \\ \end{align*}

[_separable]

1.779

16214

\begin{align*} y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.664

16215

\begin{align*} y^{\prime }&=y x -3 x -2 y+6 \\ \end{align*}

[_separable]

2.042

16216

\begin{align*} y^{\prime }&=\sin \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.143

16217

\begin{align*} y^{\prime } y&={\mathrm e}^{x -3 y^{2}} \\ \end{align*}

[_separable]

2.474

16218

\begin{align*} y^{\prime }&=\frac {x}{y} \\ \end{align*}

[_separable]

3.369

16219

\begin{align*} y^{\prime }&=y^{2}+9 \\ \end{align*}

[_quadrature]

6.672

16220

\begin{align*} x y^{\prime } y&=y^{2}+9 \\ \end{align*}

[_separable]

3.635

16221

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

3.051

16222

\begin{align*} y^{\prime } \cos \left (y\right )&=\sin \left (x \right ) \\ \end{align*}

[_separable]

2.642

16223

\begin{align*} y^{\prime }&={\mathrm e}^{2 x -3 y} \\ \end{align*}

[_separable]

1.641

16224

\begin{align*} y^{\prime }&=\frac {x}{y} \\ y \left (1\right ) &= 3 \\ \end{align*}

[_separable]

4.577

16225

\begin{align*} y^{\prime }&=2 x -1+2 y x -y \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

2.687

16226

\begin{align*} y^{\prime } y&=x y^{2}+x \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

2.660

16227

\begin{align*} y^{\prime } y&=3 \sqrt {x y^{2}+9 x} \\ y \left (1\right ) &= 4 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.269

16228

\begin{align*} y^{\prime }&=y x -4 x \\ \end{align*}

[_separable]

1.884

16229

\begin{align*} y^{\prime }-4 y&=2 \\ \end{align*}

[_quadrature]

0.377

16230

\begin{align*} y^{\prime } y&=x y^{2}-9 x \\ \end{align*}

[_separable]

2.329

16231

\begin{align*} y^{\prime }&=\sin \left (y\right ) \\ \end{align*}

[_quadrature]

27.312

16232

\begin{align*} y^{\prime }&={\mathrm e}^{x +y^{2}} \\ \end{align*}

[_separable]

1.226

16233

\begin{align*} y^{\prime }&=200 y-2 y^{2} \\ \end{align*}

[_quadrature]

0.596

16234

\begin{align*} y^{\prime }&=y x -4 x \\ \end{align*}

[_separable]

1.928

16235

\begin{align*} y^{\prime }&=y x -3 x -2 y+6 \\ \end{align*}

[_separable]

2.178

16236

\begin{align*} y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\ \end{align*}

[_separable]

3.026

16237

\begin{align*} y^{\prime }&=\tan \left (y\right ) \\ \end{align*}

[_quadrature]

1.231

16238

\begin{align*} y^{\prime }&=\frac {y}{x} \\ \end{align*}

[_separable]

1.918

16239

\begin{align*} y^{\prime }&=\frac {6 x^{2}+4}{3 y^{2}-4 y} \\ \end{align*}

[_separable]

2.208

16240

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

2.786

16241

\begin{align*} \left (y^{2}-1\right ) y^{\prime }&=4 x y^{2} \\ \end{align*}

[_separable]

14.904

16242

\begin{align*} y^{\prime }&={\mathrm e}^{-y} \\ \end{align*}

[_quadrature]

0.441

16243

\begin{align*} y^{\prime }&={\mathrm e}^{-y}+1 \\ \end{align*}

[_quadrature]

0.645

16244

\begin{align*} y^{\prime }&=3 x y^{3} \\ \end{align*}

[_separable]

3.744

16245

\begin{align*} y^{\prime }&=\frac {2+\sqrt {x}}{2+\sqrt {y}} \\ \end{align*}

[_separable]

2.701

16246

\begin{align*} y^{\prime }-3 y^{2} x^{2}&=-3 x^{2} \\ \end{align*}

[_separable]

3.448

16247

\begin{align*} y^{\prime }-3 y^{2} x^{2}&=3 x^{2} \\ \end{align*}

[_separable]

3.313

16248

\begin{align*} y^{\prime }&=200 y-2 y^{2} \\ \end{align*}

[_quadrature]

0.602

16249

\begin{align*} y^{\prime }-2 y&=-10 \\ y \left (0\right ) &= 8 \\ \end{align*}

[_quadrature]

0.566

16250

\begin{align*} y^{\prime } y&=\sin \left (x \right ) \\ y \left (0\right ) &= -4 \\ \end{align*}

[_separable]

2.493

16251

\begin{align*} y^{\prime }&=2 x -1+2 y x -y \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

3.341

16252

\begin{align*} y^{\prime } x&=y^{2}-y \\ y \left (2\right ) &= 1 \\ \end{align*}

[_separable]

3.201

16253

\begin{align*} y^{\prime } x&=y^{2}-y \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

3.202

16254

\begin{align*} y^{\prime }&=\frac {y^{2}-1}{y x} \\ y \left (1\right ) &= -2 \\ \end{align*}

[_separable]

4.319

16255

\begin{align*} \left (y^{2}-1\right ) y^{\prime }&=4 y x \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

1.717

16256

\begin{align*} x^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.074

16257

\begin{align*} y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

2.783

16258

\begin{align*} y^{\prime }-x y^{2}&=\sqrt {x} \\ \end{align*}

[_Riccati]

0.250

16259

\begin{align*} y^{\prime }&=1+\left (y x +3 y\right )^{2} \\ \end{align*}

[_Riccati]

0.977

16260

\begin{align*} y^{\prime }&=1+y x +3 y \\ \end{align*}

[_linear]

1.329

16261

\begin{align*} y^{\prime }&=4 y+8 \\ \end{align*}

[_quadrature]

0.388

16262

\begin{align*} y^{\prime }-{\mathrm e}^{2 x}&=0 \\ \end{align*}

[_quadrature]

0.202

16263

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

[_separable]

1.843

16264

\begin{align*} y^{\prime }+4 y&=y^{3} \\ \end{align*}

[_quadrature]

0.739

16265

\begin{align*} y^{\prime } x +\cos \left (x^{2}\right )&=827 y \\ \end{align*}

[_linear]

23.283

16266

\begin{align*} 2 y+y^{\prime }&=6 \\ \end{align*}

[_quadrature]

0.375

16267

\begin{align*} 2 y+y^{\prime }&=20 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.020

16268

\begin{align*} y^{\prime }&=4 y+16 x \\ \end{align*}

[[_linear, ‘class A‘]]

0.687

16269

\begin{align*} y^{\prime }-2 y x&=x \\ \end{align*}

[_separable]

1.566

16270

\begin{align*} y^{\prime } x +3 y-10 x^{2}&=0 \\ \end{align*}

[_linear]

1.923

16271

\begin{align*} x^{2} y^{\prime }+2 y x&=\sin \left (x \right ) \\ \end{align*}

[_linear]

1.796

16272

\begin{align*} y^{\prime } x&=\sqrt {x}+3 y \\ \end{align*}

[_linear]

2.233

16273

\begin{align*} \cos \left (x \right ) y^{\prime }+y \sin \left (x \right )&=\cos \left (x \right )^{2} \\ \end{align*}

[_linear]

3.437

16274

\begin{align*} y^{\prime } x +\left (2+5 x \right ) y&=\frac {20}{x} \\ \end{align*}

[_linear]

0.835

16275

\begin{align*} 2 \sqrt {x}\, y^{\prime }+y&=2 x \,{\mathrm e}^{-\sqrt {x}} \\ \end{align*}

[_linear]

3.843

16276

\begin{align*} y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 5 \\ \end{align*}

[_quadrature]

0.583

16277

\begin{align*} y^{\prime }-3 y&=6 \\ y \left (0\right ) &= -2 \\ \end{align*}

[_quadrature]

0.394

16278

\begin{align*} y^{\prime }+5 y&={\mathrm e}^{-3 x} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.181

16279

\begin{align*} y^{\prime } x +3 y&=20 x^{2} \\ y \left (1\right ) &= 10 \\ \end{align*}

[_linear]

2.374

16280

\begin{align*} y^{\prime } x&=y+x^{2} \cos \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[_linear]

2.187

16281

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=x \left (3+3 x^{2}-y\right ) \\ y \left (2\right ) &= 8 \\ \end{align*}

[_linear]

2.632

16282

\begin{align*} y^{\prime }+6 y x&=\sin \left (x \right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

[_linear]

2.032

16283

\begin{align*} y x +x^{2} y^{\prime }&=\sqrt {x}\, \sin \left (x \right ) \\ y \left (2\right ) &= 5 \\ \end{align*}

[_linear]

2.681

16284

\begin{align*} -y+y^{\prime } x&=x^{2} {\mathrm e}^{-x^{2}} \\ y \left (3\right ) &= 8 \\ \end{align*}

[_linear]

2.209

16285

\begin{align*} y^{\prime }&=\frac {1}{\left (3 x +3 y+2\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

5.794

16286

\begin{align*} y^{\prime }&=\frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.302

16287

\begin{align*} \cos \left (-4 y+8 x -3\right ) y^{\prime }&=2+2 \cos \left (-4 y+8 x -3\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

2.483

16288

\begin{align*} y^{\prime }&=1+\left (y-x \right )^{2} \\ y \left (0\right ) &= {\frac {1}{4}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.362

16289

\begin{align*} x^{2} y^{\prime }-y x&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.497

16290

\begin{align*} y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.193

16291

\begin{align*} \cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right )&=1+\sin \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.030

16292

\begin{align*} y^{\prime }&=\frac {x -y}{x +y} \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.046

16293

\begin{align*} y^{\prime }+3 y&=3 y^{3} \\ \end{align*}

[_quadrature]

0.891

16294

\begin{align*} y^{\prime }-\frac {3 y}{x}&=\frac {y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.894

16295

\begin{align*} y^{\prime }+3 \cot \left (x \right ) y&=6 \cos \left (x \right ) y^{{2}/{3}} \\ \end{align*}

[_Bernoulli]

4.906

16296

\begin{align*} y^{\prime }-\frac {y}{x}&=\frac {1}{y} \\ y \left (1\right ) &= 3 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.756

16297

\begin{align*} y^{\prime }&=\frac {y}{x}+\frac {x^{2}}{y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.750

16298

\begin{align*} 3 y^{\prime }&=-2+\sqrt {2 x +3 y+4} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.280

16299

\begin{align*} 3 y^{\prime }+\frac {2 y}{x}&=4 \sqrt {y} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.272

16300

\begin{align*} y^{\prime }&=4+\frac {1}{\sin \left (4 x -y\right )} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.664