| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.336 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t -\frac {1}{20} t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=4+{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t}-4 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=6+t^{2}+{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=5 \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=2 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=-4 \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=-\cos \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.382 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 \cos \left (3 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.524 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+y&=\cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=3+2 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-t} \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=5 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=-\cos \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=8 \\
y \left (0\right ) &= 11 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.124 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=2 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=13 \operatorname {Heaviside}\left (t -4\right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\cos \left (2 t \right ) \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=\operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.668 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+9 y&=20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.832 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=5 \delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\delta \left (t -3\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=-2 \delta \left (t -2\right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=\delta \left (-1+t \right )-3 \delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.749 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{-2 t} \sin \left (4 t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+5 y&=\operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.978 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+8 y&=\left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.632 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+3 y&=\left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
8.177 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.121 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.092 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=t \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.127 |
|
| \begin{align*}
y^{\prime }&=3-\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=3-\sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
26.329 |
|
| \begin{align*}
y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime } x&=\arcsin \left (x^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime } y&=2 x \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.454 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {x +1}{x -1} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
y^{2} y^{\prime \prime }&=8 x^{2} \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.121 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+8 y&={\mathrm e}^{-x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.305 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
y^{\prime }&=4 x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime }&=20 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime } x +\sqrt {x}&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
\sqrt {x +4}\, y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
y^{\prime }&=x \cos \left (x^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right ) x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| \begin{align*}
x&=\left (x^{2}-9\right ) y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
1&=\left (x^{2}-9\right ) y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
1&=x^{2}-9 y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| \begin{align*}
y^{\prime \prime }-3&=x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=1 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.089 |
|
| \begin{align*}
y^{\prime }&=40 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
\left (6+x \right )^{{1}/{3}} y^{\prime }&=1 \\
y \left (2\right ) &= 10 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.373 |
|
| \begin{align*}
y^{\prime }&=\frac {x -1}{x +1} \\
y \left (0\right ) &= 8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime } x +2&=\sqrt {x} \\
y \left (1\right ) &= 6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }-\sin \left (x \right )&=0 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime } x +2&=\sqrt {x} \\
y \left (1\right ) &= 8 \\
y^{\prime }\left (1\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.134 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 16 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 20 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{\sqrt {x^{2}+5}} \\
y \left (2\right ) &= 7 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}+1} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-9 x^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x \right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.183 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
y^{\prime }+3 y x&=6 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| \begin{align*}
\sin \left (x +y\right )-y^{\prime } y&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
9.549 |
|
| \begin{align*}
y^{\prime }-y^{3}&=8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
x^{2} y^{\prime }+x y^{2}&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.881 |
|