2.2.162 Problems 16101 to 16200

Table 2.337: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16101

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.336

16102

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.438

16103

\begin{align*} y^{\prime \prime }+4 y&=t -\frac {1}{20} t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.467

16104

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=4+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.444

16105

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t}-4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.455

16106

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.463

16107

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.454

16108

\begin{align*} y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.486

16109

\begin{align*} y^{\prime \prime }+4 y&=6+t^{2}+{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

16110

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

16111

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=5 \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

16112

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.326

16113

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

16114

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

16115

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=-4 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

16116

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

16117

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=-\cos \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.396

16118

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

16119

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.469

16120

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

16121

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 \cos \left (3 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

16122

\begin{align*} y^{\prime \prime }+6 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.642

16123

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

16124

\begin{align*} y^{\prime \prime }+3 y^{\prime }+y&=\cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.398

16125

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=3+2 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

16126

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

16127

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

16128

\begin{align*} y^{\prime \prime }+9 y&=5 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

16129

\begin{align*} y^{\prime \prime }+4 y&=-\cos \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

16130

\begin{align*} y^{\prime \prime }+4 y&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

16131

\begin{align*} y^{\prime \prime }+9 y&=2 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.403

16132

\begin{align*} y^{\prime \prime }+4 y&=8 \\ y \left (0\right ) &= 11 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.166

16133

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.124

16134

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=2 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.156

16135

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=13 \operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.089

16136

\begin{align*} y^{\prime \prime }+4 y&=\cos \left (2 t \right ) \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.148

16137

\begin{align*} y^{\prime \prime }+3 y&=\operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.668

16138

\begin{align*} y^{\prime \prime }+4 y^{\prime }+9 y&=20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.832

16139

\begin{align*} y^{\prime \prime }+3 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.603

16140

\begin{align*} y^{\prime \prime }+3 y&=5 \delta \left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

16141

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\delta \left (t -3\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

16142

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=-2 \delta \left (t -2\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

16143

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=\delta \left (-1+t \right )-3 \delta \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.749

16144

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{-2 t} \sin \left (4 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.213

16145

\begin{align*} y^{\prime \prime }+y^{\prime }+5 y&=\operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.978

16146

\begin{align*} y^{\prime \prime }+y^{\prime }+8 y&=\left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

4.632

16147

\begin{align*} y^{\prime \prime }+y^{\prime }+3 y&=\left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

8.177

16148

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.121

16149

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.132

16150

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.092

16151

\begin{align*} y^{\prime \prime }+16 y&=t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.127

16152

\begin{align*} y^{\prime }&=3-\sin \left (x \right ) \\ \end{align*}

[_quadrature]

0.207

16153

\begin{align*} y^{\prime }&=3-\sin \left (y\right ) \\ \end{align*}

[_quadrature]

26.329

16154

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.133

16155

\begin{align*} y^{\prime } x&=\arcsin \left (x^{2}\right ) \\ \end{align*}

[_quadrature]

0.569

16156

\begin{align*} y^{\prime } y&=2 x \\ \end{align*}

[_separable]

3.454

16157

\begin{align*} y^{\prime \prime }&=\frac {x +1}{x -1} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.980

16158

\begin{align*} x^{2} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.284

16159

\begin{align*} y^{2} y^{\prime \prime }&=8 x^{2} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.121

16160

\begin{align*} y^{\prime \prime }+3 y^{\prime }+8 y&={\mathrm e}^{-x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.305

16161

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.334

16162

\begin{align*} y^{\prime }&=4 x^{3} \\ \end{align*}

[_quadrature]

0.276

16163

\begin{align*} y^{\prime }&=20 \,{\mathrm e}^{-4 x} \\ \end{align*}

[_quadrature]

0.217

16164

\begin{align*} y^{\prime } x +\sqrt {x}&=2 \\ \end{align*}

[_quadrature]

0.233

16165

\begin{align*} \sqrt {x +4}\, y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.245

16166

\begin{align*} y^{\prime }&=x \cos \left (x^{2}\right ) \\ \end{align*}

[_quadrature]

0.207

16167

\begin{align*} y^{\prime }&=\cos \left (x \right ) x \\ \end{align*}

[_quadrature]

0.205

16168

\begin{align*} x&=\left (x^{2}-9\right ) y^{\prime } \\ \end{align*}

[_quadrature]

0.247

16169

\begin{align*} 1&=\left (x^{2}-9\right ) y^{\prime } \\ \end{align*}

[_quadrature]

0.267

16170

\begin{align*} 1&=x^{2}-9 y^{\prime } \\ \end{align*}

[_quadrature]

0.187

16171

\begin{align*} y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.924

16172

\begin{align*} y^{\prime \prime }-3&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.891

16173

\begin{align*} y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _quadrature]]

0.089

16174

\begin{align*} y^{\prime }&=40 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 4 \\ \end{align*}

[_quadrature]

0.335

16175

\begin{align*} \left (6+x \right )^{{1}/{3}} y^{\prime }&=1 \\ y \left (2\right ) &= 10 \\ \end{align*}

[_quadrature]

0.373

16176

\begin{align*} y^{\prime }&=\frac {x -1}{x +1} \\ y \left (0\right ) &= 8 \\ \end{align*}

[_quadrature]

0.303

16177

\begin{align*} y^{\prime } x +2&=\sqrt {x} \\ y \left (1\right ) &= 6 \\ \end{align*}

[_quadrature]

0.346

16178

\begin{align*} \cos \left (x \right ) y^{\prime }-\sin \left (x \right )&=0 \\ y \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

0.707

16179

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1 \\ y \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

0.303

16180

\begin{align*} y^{\prime \prime } x +2&=\sqrt {x} \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= 6 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.134

16181

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\ \end{align*}

[_quadrature]

0.207

16182

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.297

16183

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

0.283

16184

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \\ \end{align*}

[_quadrature]

0.214

16185

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \\ y \left (1\right ) &= 16 \\ \end{align*}

[_quadrature]

0.316

16186

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \\ y \left (1\right ) &= 20 \\ \end{align*}

[_quadrature]

0.317

16187

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_quadrature]

0.306

16188

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\ y \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

0.290

16189

\begin{align*} y^{\prime }&=\frac {x}{\sqrt {x^{2}+5}} \\ y \left (2\right ) &= 7 \\ \end{align*}

[_quadrature]

0.322

16190

\begin{align*} y^{\prime }&=\frac {1}{x^{2}+1} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_quadrature]

0.267

16191

\begin{align*} y^{\prime }&={\mathrm e}^{-9 x^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.320

16192

\begin{align*} y^{\prime } x&=\sin \left (x \right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

[_quadrature]

0.375

16193

\begin{align*} y^{\prime } x&=\sin \left (x^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.369

16194

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.183

16195

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.181

16196

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.185

16197

\begin{align*} y^{\prime }+3 y x&=6 x \\ \end{align*}

[_separable]

1.977

16198

\begin{align*} \sin \left (x +y\right )-y^{\prime } y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

9.549

16199

\begin{align*} y^{\prime }-y^{3}&=8 \\ \end{align*}

[_quadrature]

0.306

16200

\begin{align*} x^{2} y^{\prime }+x y^{2}&=x \\ \end{align*}

[_separable]

2.881