2.2.10 Problems 901 to 1000

Table 2.33: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

901

\begin{align*} y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

902

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.708

903

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.632

904

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.165

905

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=8 x^{{4}/{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.427

906

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.500

907

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.889

908

\begin{align*} x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

909

\begin{align*} x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.556

910

\begin{align*} x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\ x \left (0\right ) &= 375 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.773

911

\begin{align*} x^{\prime \prime }+25 x&=90 \cos \left (4 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 90 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.553

912

\begin{align*} m x^{\prime \prime }+k x&=F_{0} \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

913

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

914

\begin{align*} x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

915

\begin{align*} 2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

916

\begin{align*} x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

917

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

918

\begin{align*} x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.604

919

\begin{align*} x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

920

\begin{align*} x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\ x \left (0\right ) &= 10 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

921

\begin{align*} x^{\prime \prime }+8 x^{\prime }+25 x&=200 \cos \left (t \right )+520 \sin \left (t \right ) \\ x \left (0\right ) &= -30 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.601

922

\begin{align*} x^{\prime }&=-3 y \\ y^{\prime }&=3 x \\ \end{align*}

system_of_ODEs

0.365

923

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.734

924

\begin{align*} x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }&=5 x-y-t^{2} \\ \end{align*}

system_of_ODEs

2.740

925

\begin{align*} x^{\prime }&=y+z \\ y^{\prime }&=x+z \\ z^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.519

926

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=2 x_{3} \\ x_{3}^{\prime }&=3 x_{4} \\ x_{4}^{\prime }&=4 x_{1} \\ \end{align*}

system_of_ODEs

2.036

927

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3}+1 \\ x_{2}^{\prime }&=x_{3}+x_{4}+t \\ x_{3}^{\prime }&=x_{1}+x_{4}+t^{2} \\ x_{4}^{\prime }&=x_{1}+x_{2}+t^{3} \\ \end{align*}

system_of_ODEs

2.355

928

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.089

929

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.096

930

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

931

\begin{align*} \left (x +1\right ) y^{\prime \prime }-\left (2+x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.089

932

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.084

933

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.105

934

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.158

935

\begin{align*} 5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.064

936

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

937

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.044

938

\begin{align*} 9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.040

939

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.066

940

\begin{align*} y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.086

941

\begin{align*} y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.050

942

\begin{align*} 6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.056

943

\begin{align*} y^{\prime \prime \prime \prime }&=16 y \\ \end{align*}

[[_high_order, _missing_x]]

0.040

944

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.039

945

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.062

946

\begin{align*} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.072

947

\begin{align*} 3 y^{\prime \prime \prime }+2 y^{\prime \prime }&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.076

948

\begin{align*} y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ y^{\prime \prime }\left (0\right ) &= 5 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.083

949

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.044

950

\begin{align*} 2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.046

951

\begin{align*} y^{\prime \prime \prime }+27 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

952

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.059

953

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.051

954

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.057

955

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ y^{\prime \prime }\left (0\right ) &= 250 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.108

956

\begin{align*} y^{\prime \prime \prime }&=y \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.095

957

\begin{align*} y^{\prime \prime \prime \prime }&=y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 15 \\ \end{align*}

[[_high_order, _missing_x]]

0.123

958

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.119

959

\begin{align*} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.112

960

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.114

961

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.118

962

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.112

963

\begin{align*} x_{1}^{\prime }&=6 x_{1} \\ x_{2}^{\prime }&=-3 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.356

964

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\ \end{align*}

system_of_ODEs

0.397

965

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.346

966

\begin{align*} x_{1}^{\prime }&=2 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.382

967

\begin{align*} x_{1}^{\prime }&=3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.424

968

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2} \\ x_{2}^{\prime }&=6 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.385

969

\begin{align*} x_{1}^{\prime }&=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.375

970

\begin{align*} x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.412

971

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\ \end{align*}

system_of_ODEs

0.392

972

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.405

973

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.445

974

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=9 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.430

975

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.443

976

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.528

977

\begin{align*} x_{1}^{\prime }&=5 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.543

978

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.391

979

\begin{align*} x_{1}^{\prime }&=7 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.529

980

\begin{align*} x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\ \end{align*}

system_of_ODEs

0.410

981

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\ x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.650

982

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}+7 x_{3} \\ \end{align*}

system_of_ODEs

0.648

983

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.542

984

\begin{align*} x_{1}^{\prime }&=5 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }&=3 x_{1}+x_{2}+5 x_{3} \\ \end{align*}

system_of_ODEs

0.662

985

\begin{align*} x_{1}^{\prime }&=5 x_{1}-6 x_{3} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}-2 x_{3} \\ x_{3}^{\prime }&=4 x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}

system_of_ODEs

0.698

986

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-5 x_{1}-4 x_{2}-2 x_{3} \\ x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.658

987

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=-5 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.645

988

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }&=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

0.819

989

\begin{align*} x_{1}^{\prime }&=5 x_{1}+5 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-6 x_{1}-6 x_{2}-5 x_{3} \\ x_{3}^{\prime }&=6 x_{1}+6 x_{2}+5 x_{3} \\ \end{align*}

system_of_ODEs

0.895

990

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{3} \\ x_{2}^{\prime }&=9 x_{1}-x_{2}+2 x_{3} \\ x_{3}^{\prime }&=-9 x_{1}+4 x_{2}-x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 17 \\ \end{align*}

system_of_ODEs

0.971

991

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ x_{3}^{\prime }&=3 x_{2}+3 x_{3} \\ x_{4}^{\prime }&=4 x_{3}+4 x_{4} \\ \end{align*}

system_of_ODEs

1.047

992

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+9 x_{4} \\ x_{2}^{\prime }&=4 x_{1}+2 x_{2}-10 x_{4} \\ x_{3}^{\prime }&=-x_{3}+8 x_{4} \\ x_{4}^{\prime }&=x_{4} \\ \end{align*}

system_of_ODEs

1.086

993

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\ x_{3}^{\prime }&=5 x_{3} \\ x_{4}^{\prime }&=-21 x_{3}-2 x_{4} \\ \end{align*}

system_of_ODEs

1.157

994

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\ x_{2}^{\prime }&=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\ x_{3}^{\prime }&=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\ x_{4}^{\prime }&=7 x_{1}+x_{2}+x_{3}+4 x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

1.158

995

\begin{align*} x_{1}^{\prime }&=-40 x_{1}-12 x_{2}+54 x_{3} \\ x_{2}^{\prime }&=35 x_{1}+13 x_{2}-46 x_{3} \\ x_{3}^{\prime }&=-25 x_{1}-7 x_{2}+34 x_{3} \\ \end{align*}

system_of_ODEs

0.675

996

\begin{align*} x_{1}^{\prime }&=-20 x_{1}+11 x_{2}+13 x_{3} \\ x_{2}^{\prime }&=12 x_{1}-x_{2}-7 x_{3} \\ x_{3}^{\prime }&=-48 x_{1}+21 x_{2}+31 x_{3} \\ \end{align*}

system_of_ODEs

0.755

997

\begin{align*} x_{1}^{\prime }&=147 x_{1}+23 x_{2}-202 x_{3} \\ x_{2}^{\prime }&=-90 x_{1}-9 x_{2}+129 x_{3} \\ x_{3}^{\prime }&=90 x_{1}+15 x_{2}-123 x_{3} \\ \end{align*}

system_of_ODEs

0.786

998

\begin{align*} x_{1}^{\prime }&=9 x_{1}-7 x_{2}-5 x_{3} \\ x_{2}^{\prime }&=-12 x_{1}+7 x_{2}+11 x_{3}+9 x_{4} \\ x_{3}^{\prime }&=24 x_{1}-17 x_{2}-19 x_{3}-9 x_{4} \\ x_{4}^{\prime }&=-18 x_{1}+13 x_{2}+17 x_{3}+9 x_{4} \\ \end{align*}

system_of_ODEs

2.022

999

\begin{align*} x_{1}^{\prime }&=13 x_{1}-42 x_{2}+106 x_{3}+139 x_{4} \\ x_{2}^{\prime }&=2 x_{1}-16 x_{2}+52 x_{3}+70 x_{4} \\ x_{3}^{\prime }&=x_{1}+6 x_{2}-20 x_{3}-31 x_{4} \\ x_{4}^{\prime }&=-x_{1}-6 x_{2}+22 x_{3}+33 x_{4} \\ \end{align*}

system_of_ODEs

1.520

1000

\begin{align*} x_{1}^{\prime }&=23 x_{1}-18 x_{2}-16 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+6 x_{2}+7 x_{3}+9 x_{4} \\ x_{3}^{\prime }&=34 x_{1}-27 x_{2}-26 x_{3}-9 x_{4} \\ x_{4}^{\prime }&=-26 x_{1}+21 x_{2}+25 x_{3}+12 x_{4} \\ \end{align*}

system_of_ODEs

2.284