2.2.9 Problems 801 to 900

Table 2.31: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

801

\begin{align*} y^{\prime }&=3 \left (y+7\right ) x^{2} \\ \end{align*}

[_separable]

1.437

802

\begin{align*} y^{\prime }&=x y^{3}-y x \\ \end{align*}

[_separable]

3.477

803

\begin{align*} y^{\prime }&=\frac {-3 x^{2}-2 y^{2}}{4 y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.849

804

\begin{align*} y^{\prime }&=\frac {x +3 y}{-3 x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.673

805

\begin{align*} y^{\prime }&=\frac {2 y x +2 x}{x^{2}+1} \\ \end{align*}

[_separable]

1.674

806

\begin{align*} y^{\prime }&=\cot \left (x \right ) \left (\sqrt {y}-y\right ) \\ \end{align*}

[_separable]

8.562

807

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.087

808

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 15 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.112

809

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.139

810

\begin{align*} y^{\prime \prime }+25 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.680

811

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.305

812

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.300

813

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.874

814

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.907

815

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

816

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 13 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

817

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

818

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.406

819

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.241

820

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ y \left (2\right ) &= 10 \\ y^{\prime }\left (2\right ) &= 15 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.730

821

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 7 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler]]

1.069

822

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.046

823

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

824

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

825

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.694

826

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.705

827

\begin{align*} 2 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

828

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.182

829

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

830

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

831

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }-20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

832

\begin{align*} 35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

833

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.096

834

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.536

835

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.539

836

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.328

837

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.672

838

\begin{align*} y^{\prime \prime }+y&=3 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.463

839

\begin{align*} y^{\prime \prime }-4 y&=12 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.191

840

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

841

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.461

842

\begin{align*} y^{\prime \prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.934

843

\begin{align*} y^{\prime \prime }+2 y&=6 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.337

844

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.356

845

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.724

846

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.705

847

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

848

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

849

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

850

\begin{align*} y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

851

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

852

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

853

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

854

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.302

855

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.430

856

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.395

857

\begin{align*} y^{\prime \prime }-2 i y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

858

\begin{align*} y^{\prime \prime }-i y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.227

859

\begin{align*} y^{\prime \prime }&=\left (-2+2 i \sqrt {3}\right ) y \\ \end{align*}

[[_2nd_order, _missing_x]]

0.073

860

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.792

861

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.894

862

\begin{align*} \frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.325

863

\begin{align*} 3 x^{\prime \prime }+30 x^{\prime }+63 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

864

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.412

865

\begin{align*} 2 x^{\prime \prime }+12 x^{\prime }+50 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= -8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

866

\begin{align*} 4 x^{\prime \prime }+20 x^{\prime }+169 x&=0 \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 16 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.421

867

\begin{align*} 2 x^{\prime \prime }+16 x^{\prime }+40 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.379

868

\begin{align*} x^{\prime \prime }+10 x^{\prime }+125 x&=0 \\ x \left (0\right ) &= 6 \\ x^{\prime }\left (0\right ) &= 50 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.420

869

\begin{align*} y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

870

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

871

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

872

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

873

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.484

874

\begin{align*} 2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.429

875

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

876

\begin{align*} y^{\prime \prime }-4 y&=\cosh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.598

877

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

878

\begin{align*} y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

879

\begin{align*} y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

880

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

881

\begin{align*} y^{\prime \prime }+4 y&=3 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

882

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

883

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.492

884

\begin{align*} y^{\prime \prime }+4 y&=2 x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.483

885

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.447

886

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.537

887

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

888

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.460

889

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

890

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.660

891

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right )^{3} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.819

892

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

893

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

894

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.390

895

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

896

\begin{align*} y^{\prime \prime }+4 y&=\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

897

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

898

\begin{align*} y^{\prime \prime }+9 y&=2 \sec \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

899

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

900

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450