| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x_{1}^{\prime }&=47 x_{1}-8 x_{2}+5 x_{3}-5 x_{4} \\
x_{2}^{\prime }&=-10 x_{1}+32 x_{2}+18 x_{3}-2 x_{4} \\
x_{3}^{\prime }&=139 x_{1}-40 x_{2}-167 x_{3}-121 x_{4} \\
x_{4}^{\prime }&=-232 x_{1}+64 x_{2}+360 x_{3}+248 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.577 |
|
| \begin{align*}
x_{1}^{\prime }&=139 x_{1}-14 x_{2}-52 x_{3}-14 x_{4}+28 x_{5} \\
x_{2}^{\prime }&=-22 x_{1}+5 x_{2}+7 x_{3}+8 x_{4}-7 x_{5} \\
x_{3}^{\prime }&=370 x_{1}-38 x_{2}-139 x_{3}-38 x_{4}+76 x_{5} \\
x_{4}^{\prime }&=152 x_{1}-16 x_{2}-59 x_{3}-13 x_{4}+35 x_{5} \\
x_{5}^{\prime }&=95 x_{1}-10 x_{2}-38 x_{3}-7 x_{4}+23 x_{5} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
4.085 |
|
| \begin{align*}
x_{1}^{\prime }&=9 x_{1}+13 x_{2}-13 x_{6} \\
x_{2}^{\prime }&=-14 x_{1}+19 x_{2}-10 x_{3}-20 x_{4}+10 x_{5}+4 x_{6} \\
x_{3}^{\prime }&=-30 x_{1}+12 x_{2}-7 x_{3}-30 x_{4}+12 x_{5}+18 x_{6} \\
x_{4}^{\prime }&=-12 x_{1}+10 x_{2}-10 x_{3}-9 x_{4}+10 x_{5}+2 x_{6} \\
x_{5}^{\prime }&=6 x_{1}+9 x_{2}+6 x_{4}+5 x_{5}-15 x_{6} \\
x_{6}^{\prime }&=-14 x_{1}+23 x_{2}-10 x_{3}-20 x_{4}+10 x_{5} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
4.377 |
|
| \begin{align*}
x_{1}^{\prime }&=9 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=-6 x_{1}-x_{2} \\
x_{3}^{\prime }&=6 x_{1}+4 x_{2}+3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.591 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-3 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+7 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-3 x_{2}-7 x_{3} \\
x_{3}^{\prime }&=x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{3} \\
x_{2}^{\prime }&=x_{4} \\
x_{3}^{\prime }&=-2 x_{1}+2 x_{2}-3 x_{3}+x_{4} \\
x_{4}^{\prime }&=2 x_{1}-2 x_{2}+x_{3}-3 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-x_{1}-4 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}+5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
x_{1}^{\prime }&=7 x_{1}+x_{2} \\
x_{2}^{\prime }&=-4 x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+9 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1} \\
x_{2}^{\prime }&=-7 x_{1}+9 x_{2}+7 x_{3} \\
x_{3}^{\prime }&=2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
x_{1}^{\prime }&=25 x_{1}+12 x_{2} \\
x_{2}^{\prime }&=-18 x_{1}-5 x_{2} \\
x_{3}^{\prime }&=6 x_{1}+6 x_{2}+13 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
x_{1}^{\prime }&=-19 x_{1}+12 x_{2}+84 x_{3} \\
x_{2}^{\prime }&=5 x_{2} \\
x_{3}^{\prime }&=-8 x_{1}+4 x_{2}+33 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
x_{1}^{\prime }&=-13 x_{1}+40 x_{2}-48 x_{3} \\
x_{2}^{\prime }&=-8 x_{1}+23 x_{2}-24 x_{3} \\
x_{3}^{\prime }&=3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-4 x_{3} \\
x_{2}^{\prime }&=-x_{1}-x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{3} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.530 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+x_{3} \\
x_{2}^{\prime }&=-x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+x_{3} \\
x_{2}^{\prime }&=x_{2}-4 x_{3} \\
x_{3}^{\prime }&=x_{2}-3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-x_{2}-5 x_{3} \\
x_{3}^{\prime }&=4 x_{1}+x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}+4 x_{2} \\
x_{3}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=-2 x_{1}-2 x_{2}-3 x_{3} \\
x_{3}^{\prime }&=2 x_{1}+3 x_{2}+4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=18 x_{1}+7 x_{2}+4 x_{3} \\
x_{3}^{\prime }&=-27 x_{1}-9 x_{2}-5 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\
x_{3}^{\prime }&=-2 x_{1}-4 x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\
x_{2}^{\prime }&=x_{2} \\
x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\
x_{4}^{\prime }&=-4 x_{2}-x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}+x_{4} \\
x_{2}^{\prime }&=2 x_{2}+x_{3} \\
x_{3}^{\prime }&=2 x_{3}+x_{4} \\
x_{4}^{\prime }&=2 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.733 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
x_{3}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\
x_{4}^{\prime }&=x_{2}+x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+3 x_{2}+7 x_{3} \\
x_{2}^{\prime }&=-x_{2}-4 x_{3} \\
x_{3}^{\prime }&=x_{2}+3 x_{3} \\
x_{4}^{\prime }&=-6 x_{2}-14 x_{3}+x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.667 |
|
| \begin{align*}
x_{1}^{\prime }&=39 x_{1}+8 x_{2}-16 x_{3} \\
x_{2}^{\prime }&=-36 x_{1}-5 x_{2}+16 x_{3} \\
x_{3}^{\prime }&=72 x_{1}+16 x_{2}-29 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| \begin{align*}
x_{1}^{\prime }&=28 x_{1}+50 x_{2}+100 x_{3} \\
x_{2}^{\prime }&=15 x_{1}+33 x_{2}+60 x_{3} \\
x_{3}^{\prime }&=-15 x_{1}-30 x_{2}-57 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+17 x_{2}+4 x_{3} \\
x_{2}^{\prime }&=-x_{1}+6 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}+2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.554 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+5 x_{2}-5 x_{3} \\
x_{2}^{\prime }&=3 x_{1}-x_{2}+3 x_{3} \\
x_{3}^{\prime }&=8 x_{1}-8 x_{2}+10 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
x_{1}^{\prime }&=-15 x_{1}-7 x_{2}+4 x_{3} \\
x_{2}^{\prime }&=34 x_{1}+16 x_{2}-11 x_{3} \\
x_{3}^{\prime }&=17 x_{1}+7 x_{2}+5 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+x_{2}+x_{3}-2 x_{4} \\
x_{2}^{\prime }&=7 x_{1}-4 x_{2}-6 x_{3}+11 x_{4} \\
x_{3}^{\prime }&=5 x_{1}-x_{2}+x_{3}+3 x_{4} \\
x_{4}^{\prime }&=6 x_{1}-2 x_{2}-2 x_{3}+6 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.149 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}-2 x_{3}+x_{4} \\
x_{2}^{\prime }&=3 x_{2}-5 x_{3}+3 x_{4} \\
x_{3}^{\prime }&=-13 x_{2}+22 x_{3}-12 x_{4} \\
x_{4}^{\prime }&=-27 x_{2}+45 x_{3}-25 x_{4} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 1.092 |
|
| \begin{align*}
x_{1}^{\prime }&=35 x_{1}-12 x_{2}+4 x_{3}+30 x_{4} \\
x_{2}^{\prime }&=22 x_{1}-8 x_{2}+3 x_{3}+19 x_{4} \\
x_{3}^{\prime }&=-10 x_{1}+3 x_{2}-9 x_{4} \\
x_{4}^{\prime }&=-27 x_{1}+9 x_{2}-3 x_{3}-23 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| \begin{align*}
x_{1}^{\prime }&=11 x_{1}-x_{2}+26 x_{3}+6 x_{4}-3 x_{5} \\
x_{2}^{\prime }&=3 x_{2} \\
x_{3}^{\prime }&=-9 x_{1}-24 x_{3}-6 x_{4}+3 x_{5} \\
x_{4}^{\prime }&=3 x_{1}+9 x_{3}+5 x_{4}-x_{5} \\
x_{5}^{\prime }&=-48 x_{1}-3 x_{2}-138 x_{3}-30 x_{4}+18 x_{5} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.386 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2}+x_{3} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2}+x_{4} \\
x_{3}^{\prime }&=3 x_{3}-4 x_{4} \\
x_{4}^{\prime }&=4 x_{3}+3 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.783 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-8 x_{3}-3 x_{4} \\
x_{2}^{\prime }&=-18 x_{1}-x_{2} \\
x_{3}^{\prime }&=-9 x_{1}-3 x_{2}-25 x_{3}-9 x_{4} \\
x_{4}^{\prime }&=33 x_{1}+10 x_{2}+90 x_{3}+32 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.417 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=4 y \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
2 y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.229 |
|
| \begin{align*}
y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
\left (x -2\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
\left (2 x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
2 \left (x +1\right ) y^{\prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
2 \left (x -1\right ) y^{\prime }&=3 y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.271 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). | [_separable] | ✓ | ✓ | ✓ | ✗ | 0.144 |
|
| \begin{align*}
2 y^{\prime } x&=y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.145 |
|
| \begin{align*}
x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✗ |
✗ |
✓ |
✗ |
0.047 |
|
| \begin{align*}
x^{3} y^{\prime }&=2 y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✗ |
✗ |
✓ |
✗ |
0.056 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.248 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.617 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
\left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
3 y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.293 |
|
| \begin{align*}
5 y^{\prime \prime }-2 y^{\prime } x +10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
\left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\
y \left (3\right ) &= 2 \\
y^{\prime }\left (3\right ) &= 0 \\
\end{align*} Series expansion around \(x=3\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
\left (4 x^{2}+16 x +17\right ) y^{\prime \prime }&=8 y \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= 0 \\
\end{align*} Series expansion around \(x=-2\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\
y \left (-3\right ) &= 1 \\
y^{\prime }\left (-3\right ) &= 0 \\
\end{align*} Series expansion around \(x=-3\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{-x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.529 |
|
| \begin{align*}
y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
1.294 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }&=y x \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
3 y+y^{\prime }&={\mathrm e}^{-2 t}+t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.845 |
|
| \begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.111 |
|
| \begin{align*}
y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.316 |
|