2.2.161 Problems 16001 to 16100

Table 2.335: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16001

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.434

16002

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.271

16003

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.274

16004

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.276

16005

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.269

16006

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.264

16007

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.287

16008

\begin{align*} x^{\prime }&=2 x+2 y \\ y^{\prime }&=-4 x+6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.419

16009

\begin{align*} x^{\prime }&=-3 x-5 y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.587

16010

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.564

16011

\begin{align*} x^{\prime }&=2 x-6 y \\ y^{\prime }&=2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.560

16012

\begin{align*} x^{\prime }&=x+4 y \\ y^{\prime }&=-3 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.463

16013

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.269

16014

\begin{align*} x^{\prime }&=2 x+2 y \\ y^{\prime }&=-4 x+6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.339

16015

\begin{align*} x^{\prime }&=-3 x-5 y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.368

16016

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.372

16017

\begin{align*} x^{\prime }&=2 x-6 y \\ y^{\prime }&=2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.373

16018

\begin{align*} x^{\prime }&=x+4 y \\ y^{\prime }&=-3 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.387

16019

\begin{align*} x^{\prime }&=-\frac {9 x}{10}-2 y \\ y^{\prime }&=x+\frac {11 y}{10} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.384

16020

\begin{align*} x^{\prime }&=-3 x+10 y \\ y^{\prime }&=-x+3 y \\ \end{align*}

system_of_ODEs

0.277

16021

\begin{align*} x^{\prime }&=-3 x \\ y^{\prime }&=x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.244

16022

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.381

16023

\begin{align*} x^{\prime }&=-2 x-y \\ y^{\prime }&=x-4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.243

16024

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.256

16025

\begin{align*} x^{\prime }&=-3 x \\ y^{\prime }&=x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.289

16026

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.300

16027

\begin{align*} x^{\prime }&=-2 x-y \\ y^{\prime }&=x-4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.299

16028

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.300

16029

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.322

16030

\begin{align*} x^{\prime }&=2 x+4 y \\ y^{\prime }&=3 x+6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.362

16031

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.347

16032

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.223

16033

\begin{align*} x^{\prime }&=-2 y \\ y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.230

16034

\begin{align*} x^{\prime }&=-3 x-y \\ y^{\prime }&=4 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.355

16035

\begin{align*} y^{\prime \prime }-6 y^{\prime }-7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

16036

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

16037

\begin{align*} x^{\prime }&=\frac {y}{10} \\ y^{\prime }&=\frac {z}{5} \\ z^{\prime }&=\frac {2 x}{5} \\ \end{align*}

system_of_ODEs

1.760

16038

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ z^{\prime }&=2 z \\ \end{align*}

system_of_ODEs

0.587

16039

\begin{align*} x^{\prime }&=-2 x+3 y \\ y^{\prime }&=3 x-2 y \\ z^{\prime }&=-z \\ \end{align*}

system_of_ODEs

0.538

16040

\begin{align*} x^{\prime }&=x+3 z \\ y^{\prime }&=-y \\ z^{\prime }&=-3 x+z \\ \end{align*}

system_of_ODEs

0.589

16041

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 y-z \\ z^{\prime }&=-y+2 z \\ \end{align*}

system_of_ODEs

0.458

16042

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-2 y \\ z^{\prime }&=-z \\ \end{align*}

system_of_ODEs

0.447

16043

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-2 y \\ z^{\prime }&=z \\ \end{align*}

system_of_ODEs

0.441

16044

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-4 y \\ z^{\prime }&=-z \\ \end{align*}

system_of_ODEs

0.520

16045

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-4 y \\ z^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.436

16046

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-2 y+z \\ z^{\prime }&=-2 z \\ \end{align*}

system_of_ODEs

0.418

16047

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=z \\ z^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.370

16048

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=-2 y+3 z \\ z^{\prime }&=-x+3 y-z \\ \end{align*}

system_of_ODEs

1.144

16049

\begin{align*} x^{\prime }&=-4 x+3 y \\ y^{\prime }&=z-y \\ z^{\prime }&=5 x-5 y \\ \end{align*}

system_of_ODEs

1.072

16050

\begin{align*} x^{\prime }&=-10 x+10 y \\ y^{\prime }&=28 x-y \\ z^{\prime }&=-\frac {8 z}{3} \\ \end{align*}

system_of_ODEs

0.851

16051

\begin{align*} x^{\prime }&=z-y \\ y^{\prime }&=z-x \\ z^{\prime }&=z \\ \end{align*}

system_of_ODEs

0.445

16052

\(\left [\begin {array}{cc} 1 & 0 \\ 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.214

16053

\(\left [\begin {array}{cc} 0 & 1 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.263

16054

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=-2 y \\ \end{align*}

system_of_ODEs

0.264

16055

\(\left [\begin {array}{cc} 1 & 0 \\ 2 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.210

16056

\begin{align*} x^{\prime }&=0 \\ y^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.268

16057

\begin{align*} x^{\prime }&=\pi ^{2} x+\frac {187 y}{5} \\ y^{\prime }&=\sqrt {555}\, x+\frac {400617 y}{5000} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.767

16058

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-y \\ \end{align*}

system_of_ODEs

0.359

16059

\begin{align*} x^{\prime }&=-3 x+y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.477

16060

\begin{align*} x^{\prime }&=-3 x+y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.506

16061

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-2 x+y \\ \end{align*}

system_of_ODEs

0.352

16062

\begin{align*} x^{\prime }&=2 x \\ y^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.296

16063

\begin{align*} x^{\prime }&=3 x+y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.480

16064

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-4 x-4 y \\ \end{align*}

system_of_ODEs

0.303

16065

\begin{align*} x^{\prime }&=-3 x-3 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.668

16066

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.313

16067

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.375

16068

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.327

16069

\begin{align*} y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -\sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.035

16070

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.302

16071

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.325

16072

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

16073

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

16074

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

16075

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

16076

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

16077

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=4 \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

16078

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.423

16079

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=3 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.441

16080

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.470

16081

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.675

16082

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.430

16083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.414

16084

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

16085

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.539

16086

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.451

16087

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.493

16088

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.354

16089

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=5 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.402

16090

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.395

16091

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=10 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.487

16092

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y&=-8 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.523

16093

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.472

16094

\begin{align*} y^{\prime \prime }+4 y&=2 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.490

16095

\begin{align*} y^{\prime \prime }+2 y&=-3 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.820

16096

\begin{align*} y^{\prime \prime }+4 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.441

16097

\begin{align*} y^{\prime \prime }+9 y&=6 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.806

16098

\begin{align*} y^{\prime \prime }+2 y&=-{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.485

16099

\begin{align*} y^{\prime \prime }+4 y&=-3 t^{2}+2 t +3 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.454

16100

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.302