2.2.160 Problems 15901 to 16000

Table 2.333: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15901

\begin{align*} y^{\prime }&=-3 y+4 \cos \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.992

15902

\begin{align*} y^{\prime }&=2 y+\sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.931

15903

\begin{align*} y^{\prime }&=3 y-4 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.366

15904

\begin{align*} y^{\prime }&=\frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_linear, ‘class A‘]]

1.430

15905

\begin{align*} y^{\prime }+2 y&={\mathrm e}^{\frac {t}{3}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.845

15906

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 10 \\ \end{align*}

[[_linear, ‘class A‘]]

1.843

15907

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}

[[_linear, ‘class A‘]]

2.097

15908

\begin{align*} 3 y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.159

15909

\begin{align*} -2 y+y^{\prime }&=7 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_linear, ‘class A‘]]

1.579

15910

\begin{align*} y^{\prime }+2 y&=3 t^{2}+2 t -1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.302

15911

\begin{align*} y^{\prime }+2 y&=t^{2}+2 t +1+{\mathrm e}^{4 t} \\ \end{align*}

[[_linear, ‘class A‘]]

3.329

15912

\begin{align*} y+y^{\prime }&=t^{3}+\sin \left (3 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.284

15913

\begin{align*} y^{\prime }-3 y&=2 t -{\mathrm e}^{4 t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.534

15914

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.711

15915

\begin{align*} y^{\prime }&=-\frac {y}{t}+2 \\ \end{align*}

[_linear]

4.262

15916

\begin{align*} y^{\prime }&=\frac {3 y}{t}+t^{5} \\ \end{align*}

[_linear]

3.357

15917

\begin{align*} y^{\prime }&=-\frac {y}{t +1}+t^{2} \\ \end{align*}

[_linear]

3.036

15918

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

2.687

15919

\begin{align*} y^{\prime }-\frac {2 t y}{t^{2}+1}&=3 \\ \end{align*}

[_linear]

2.488

15920

\begin{align*} y^{\prime }-\frac {2 y}{t}&=t^{3} {\mathrm e}^{t} \\ \end{align*}

[_linear]

2.922

15921

\begin{align*} y^{\prime }&=-\frac {y}{t +1}+2 \\ y \left (0\right ) &= 3 \\ \end{align*}

[_linear]

3.561

15922

\begin{align*} y^{\prime }&=\frac {y}{t +1}+4 t^{2}+4 t \\ y \left (1\right ) &= 10 \\ \end{align*}

[_linear]

2.434

15923

\begin{align*} y^{\prime }&=-\frac {y}{t}+2 \\ y \left (1\right ) &= 3 \\ \end{align*}

[_linear]

4.625

15924

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ y \left (0\right ) &= 3 \\ \end{align*}

[_linear]

2.753

15925

\begin{align*} y^{\prime }-\frac {2 y}{t}&=2 t^{2} \\ y \left (-2\right ) &= 4 \\ \end{align*}

[_linear]

2.023

15926

\begin{align*} y^{\prime }-\frac {3 y}{t}&=2 t^{3} {\mathrm e}^{2 t} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

3.924

15927

\begin{align*} y^{\prime }&=\sin \left (t \right ) y+4 \\ \end{align*}

[_linear]

2.605

15928

\begin{align*} y^{\prime }&=t^{2} y+4 \\ \end{align*}

[_linear]

1.904

15929

\begin{align*} y^{\prime }&=\frac {y}{t^{2}}+4 \cos \left (t \right ) \\ \end{align*}

[_linear]

2.437

15930

\begin{align*} y^{\prime }&=y+4 \cos \left (t^{2}\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.303

15931

\begin{align*} y^{\prime }&=-{\mathrm e}^{-t^{2}} y+\cos \left (t \right ) \\ \end{align*}

[_linear]

3.072

15932

\begin{align*} y^{\prime }&=\frac {y}{\sqrt {t^{3}-3}}+t \\ \end{align*}

[_linear]

23.392

15933

\begin{align*} y^{\prime }&=a t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

2.244

15934

\begin{align*} y^{\prime }&=t^{r} y+4 \\ \end{align*}

[_linear]

2.362

15935

\begin{align*} v^{\prime }+\frac {2 v}{5}&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.145

15936

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

2.625

15937

\begin{align*} y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.370

15938

\begin{align*} y^{\prime }&=3 y \\ \end{align*}

[_quadrature]

0.936

15939

\begin{align*} y^{\prime }&=t^{2} \left (t^{2}+1\right ) \\ \end{align*}

[_quadrature]

0.293

15940

\begin{align*} y^{\prime }&=-\sin \left (y\right )^{5} \\ \end{align*}

[_quadrature]

28.319

15941

\begin{align*} y^{\prime }&=\frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (-1+t \right ) \left (3-y\right )} \\ \end{align*}

[_separable]

4.450

15942

\begin{align*} y^{\prime }&=\sin \left (y\right )^{2} \\ \end{align*}

[_quadrature]

2.224

15943

\begin{align*} y^{\prime }&=\left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

[‘x=_G(y,y’)‘]

10.750

15944

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.638

15945

\begin{align*} y^{\prime }&=3-2 y \\ \end{align*}

[_quadrature]

0.603

15946

\begin{align*} y^{\prime }&=t y \\ \end{align*}

[_separable]

2.580

15947

\begin{align*} y^{\prime }&=3 y+{\mathrm e}^{7 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.588

15948

\begin{align*} y^{\prime }&=\frac {t y}{t^{2}+1} \\ \end{align*}

[_separable]

2.445

15949

\begin{align*} y^{\prime }&=-5 y+\sin \left (3 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.003

15950

\begin{align*} y^{\prime }&=t +\frac {2 y}{t +1} \\ \end{align*}

[_linear]

2.184

15951

\begin{align*} y^{\prime }&=3+y^{2} \\ \end{align*}

[_quadrature]

3.781

15952

\begin{align*} y^{\prime }&=2 y-y^{2} \\ \end{align*}

[_quadrature]

1.634

15953

\begin{align*} y^{\prime }&=-3 y+{\mathrm e}^{-2 t}+t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

3.091

15954

\begin{align*} x^{\prime }&=-t x \\ x \left (0\right ) &= {\mathrm e} \\ \end{align*}

[_separable]

2.796

15955

\begin{align*} y^{\prime }&=2 y+\cos \left (4 t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.197

15956

\begin{align*} y^{\prime }&=3 y+2 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.598

15957

\begin{align*} y^{\prime }&=t^{2} y^{3}+y^{3} \\ y \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

[_separable]

3.648

15958

\begin{align*} y^{\prime }+5 y&=3 \,{\mathrm e}^{-5 t} \\ y \left (0\right ) &= -2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.589

15959

\begin{align*} y^{\prime }&=2 t y+3 t \,{\mathrm e}^{t^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

4.062

15960

\begin{align*} y^{\prime }&=\frac {\left (t +1\right )^{2}}{\left (1+y\right )^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

7.899

15961

\begin{align*} y^{\prime }&=2 t y^{2}+3 t^{2} y^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

[_separable]

4.309

15962

\begin{align*} y^{\prime }&=1-y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

3.784

15963

\begin{align*} y^{\prime }&=\frac {t^{2}}{y+t^{3} y} \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

2.920

15964

\begin{align*} y^{\prime }&=y^{2}-2 y+1 \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.474

15965

\begin{align*} y^{\prime }&=\left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \\ \end{align*}

[_Riccati]

6.017

15966

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\ \end{align*}

[_Abel]

7.754

15967

\begin{align*} y^{\prime }&=t^{2} y+1+y+t^{2} \\ \end{align*}

[_separable]

3.112

15968

\begin{align*} y^{\prime }&=\frac {2 y+1}{t} \\ \end{align*}

[_separable]

3.737

15969

\begin{align*} y^{\prime }&=3-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.302

15970

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.320

15971

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.380

15972

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.316

15973

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-y \\ \end{align*}

system_of_ODEs

0.405

15974

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.609

15975

\begin{align*} x^{\prime }&=3 y \\ y^{\prime }&=3 \pi y-\frac {x}{3} \\ \end{align*}

system_of_ODEs

0.829

15976

\begin{align*} p^{\prime }&=3 p-2 q-7 r \\ q^{\prime }&=-2 p+6 r \\ r^{\prime }&=\frac {73 q}{100}+2 r \\ \end{align*}

system_of_ODEs

71.455

15977

\begin{align*} x^{\prime }&=-3 x+2 \pi y \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.838

15978

\begin{align*} x^{\prime }&=\beta y \\ y^{\prime }&=\gamma x-y \\ \end{align*}

system_of_ODEs

0.770

15979

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.460

15980

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.379

15981

\begin{align*} x^{\prime }&=-2 x-y \\ y^{\prime }&=2 x-5 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.511

15982

\begin{align*} x^{\prime }&=-2 x-3 y \\ y^{\prime }&=3 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.502

15983

\begin{align*} x^{\prime }&=2 x+3 y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.467

15984

\begin{align*} x^{\prime }&=1 \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.457

15985

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=-2 y \\ \end{align*}

system_of_ODEs

0.329

15986

\begin{align*} x^{\prime }&=-4 x-2 y \\ y^{\prime }&=-x-3 y \\ \end{align*}

system_of_ODEs

0.444

15987

\begin{align*} x^{\prime }&=-5 x-2 y \\ y^{\prime }&=-x-4 y \\ \end{align*}

system_of_ODEs

0.439

15988

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+4 y \\ \end{align*}

system_of_ODEs

0.357

15989

\begin{align*} x^{\prime }&=-\frac {x}{2} \\ y^{\prime }&=x-\frac {y}{2} \\ \end{align*}

system_of_ODEs

0.325

15990

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=9 x \\ \end{align*}

system_of_ODEs

0.455

15991

\begin{align*} x^{\prime }&=3 x+4 y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.435

15992

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.588

15993

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.523

15994

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=x-4 y \\ \end{align*}

system_of_ODEs

0.427

15995

\begin{align*} x^{\prime }&=-2 x-2 y \\ y^{\prime }&=-2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.486

15996

\begin{align*} x^{\prime }&=-2 x-2 y \\ y^{\prime }&=-2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.466

15997

\begin{align*} x^{\prime }&=-2 x-2 y \\ y^{\prime }&=-2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.451

15998

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.427

15999

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.414

16000

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.421