2.2.157 Problems 15601 to 15700

Table 2.327: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15601

\begin{align*} y^{\prime }&=\cot \left (x \right ) y+\sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[_linear]

2.082

15602

\begin{align*} x -y^{\prime } y&=0 \\ \end{align*}

[_separable]

4.090

15603

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

[_separable]

1.769

15604

\begin{align*} y^{\prime } x +x^{2}-y&=0 \\ \end{align*}

[_linear]

1.213

15605

\begin{align*} x y \left (1-y\right )-2 y^{\prime }&=0 \\ \end{align*}

[_separable]

3.638

15606

\begin{align*} x \left (1-y^{3}\right )-3 y^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

1.934

15607

\begin{align*} \left (2 x -1\right ) y+x \left (x +1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

1.970

15608

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.269

15609

\begin{align*} y^{\prime }&=x +y \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.937

15610

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_separable]

2.070

15611

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_separable]

2.103

15612

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ y \left (\frac {1}{2}\right ) &= 1 \\ \end{align*}

[_linear]

3.176

15613

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ \end{align*}

[_linear]

2.184

15614

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_linear]

2.760

15615

\begin{align*} y^{\prime }&=y^{2} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_quadrature]

1.270

15616

\begin{align*} y^{\prime }&=y^{2} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_quadrature]

0.948

15617

\begin{align*} y^{\prime }&=y^{2} \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

1.045

15618

\begin{align*} y^{\prime }&=y^{3} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_quadrature]

28.122

15619

\begin{align*} y^{\prime }&=y^{3} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_quadrature]

1.178

15620

\begin{align*} y^{\prime }&=y^{3} \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_quadrature]

5.484

15621

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_separable]

4.727

15622

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

2.789

15623

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_separable]

3.816

15624

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_separable]

4.953

15625

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_separable]

3.757

15626

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_separable]

3.527

15627

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_separable]

3.539

15628

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

3.552

15629

\begin{align*} y^{\prime }&=3 x y^{{1}/{3}} \\ y \left (-1\right ) &= {\frac {3}{2}} \\ \end{align*}

[_separable]

32.006

15630

\begin{align*} y^{\prime }&=3 x y^{{1}/{3}} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_separable]

62.865

15631

\begin{align*} y^{\prime }&=3 x y^{{1}/{3}} \\ y \left (-1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

25.158

15632

\begin{align*} y^{\prime }&=3 x y^{{1}/{3}} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_separable]

11.718

15633

\begin{align*} y^{\prime }&=3 x y^{{1}/{3}} \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_separable]

32.981

15634

\begin{align*} y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.120

15635

\begin{align*} y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.517

15636

\begin{align*} y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\ y \left (0\right ) &= -3 \\ \end{align*}

[_quadrature]

1.532

15637

\begin{align*} y^{\prime }&=\frac {y}{y-x} \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.195

15638

\begin{align*} y^{\prime }&=\frac {y}{y-x} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.830

15639

\begin{align*} y^{\prime }&=\frac {y}{y-x} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.156

15640

\begin{align*} y^{\prime }&=\frac {y}{y-x} \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.567

15641

\begin{align*} y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.176

15642

\begin{align*} y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.110

15643

\begin{align*} y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.146

15644

\begin{align*} y^{\prime }&=x \sqrt {1-y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

26.237

15645

\begin{align*} y^{\prime }&=x \sqrt {1-y^{2}} \\ y \left (0\right ) &= {\frac {9}{10}} \\ \end{align*}

[_separable]

18.702

15646

\begin{align*} y^{\prime }&=x \sqrt {1-y^{2}} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

4.309

15647

\begin{align*} y^{\prime }&=x \sqrt {1-y^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

4.263

15648

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.141

15649

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.283

15650

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.502

15651

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (1\right ) &= -{\frac {1}{5}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.191

15652

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (1\right ) &= -{\frac {1}{4}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.576

15653

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=x \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.894

15654

\begin{align*} x y^{\prime \prime \prime }+y^{\prime } x&=4 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.759

15655

\begin{align*} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.973

15656

\begin{align*} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\ y \left (5\right ) &= 0 \\ y^{\prime }\left (5\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.009

15657

\begin{align*} \sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\ y \left (-2\right ) &= 3 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.187

15658

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right )&=x \,{\mathrm e}^{x} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.563

15659

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.851

15660

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.954

15661

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.811

15662

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.540

15663

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.610

15664

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.082

15665

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.351

15666

\begin{align*} y^{\prime \prime }-4 y&=31 \\ y \left (0\right ) &= -9 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.772

15667

\begin{align*} y^{\prime \prime }+9 y&=27 x +18 \\ y \left (0\right ) &= 23 \\ y^{\prime }\left (0\right ) &= 21 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.523

15668

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=-3 x -\frac {3}{x} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.591

15669

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

15670

\begin{align*} -4 y+6 y^{\prime }-4 y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.064

15671

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

15672

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.062

15673

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.078

15674

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.062

15675

\begin{align*} 36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.072

15676

\begin{align*} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.072

15677

\begin{align*} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

15678

\begin{align*} y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.108

15679

\begin{align*} y^{\prime \prime }+\alpha y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.645

15680

\begin{align*} y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.074

15681

\begin{align*} y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.065

15682

\begin{align*} y^{\prime }-i y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.749

15683

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y&=2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.215

15684

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.595

15685

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=3+\cos \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.172

15686

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }&=6 x -20-120 \,{\mathrm e}^{x} x^{2} \\ \end{align*}

[[_high_order, _missing_y]]

0.217

15687

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y&=36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.505

15688

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=\left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.688

15689

\begin{align*} y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y&={\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.289

15690

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 5 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.098

15691

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= -3 \\ y^{\prime \prime \prime }\left (0\right ) &= 3 \\ \end{align*}

[[_high_order, _missing_x]]

0.105

15692

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=2 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ y^{\prime \prime }\left (0\right ) &= -3 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.196

15693

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=3 x +4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ y^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.211

15694

\begin{align*} y^{\prime }-y&=0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.141

15695

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.191

15696

\begin{align*} 2 y+y^{\prime }&=4 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.152

15697

\begin{align*} y^{\prime \prime }-9 y&=2 \sin \left (3 x \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.225

15698

\begin{align*} y^{\prime \prime }+9 y&=2 \sin \left (3 x \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.216

15699

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=x \,{\mathrm e}^{x}-3 x^{2} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.248

15700

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}-3 x^{2} \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_y]]

0.334