2.2.158 Problems 15701 to 15800

Table 2.329: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15701

\begin{align*} y^{\prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.145

15702

\begin{align*} y^{\prime }-y&=2 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.163

15703

\begin{align*} y^{\prime \prime }-9 y&=2+x \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.204

15704

\begin{align*} y^{\prime \prime }+9 y&=2+x \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.211

15705

\begin{align*} y^{\prime \prime }-y^{\prime }+6 y&=-2 \sin \left (3 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.317

15706

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=-x^{2}+1 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.206

15707

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=x +\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_y]]

0.340

15708

\begin{align*} y^{\prime }-2 y&=6 \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.164

15709

\begin{align*} y^{\prime }+y&={\mathrm e}^{x} \\ y \left (0\right ) &= {\frac {5}{2}} \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.183

15710

\begin{align*} y^{\prime \prime }+9 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.177

15711

\begin{align*} y^{\prime \prime }+9 y&=18 \,{\mathrm e}^{3 x} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.206

15712

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.164

15713

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2} \\ y \left (0\right ) &= {\frac {11}{4}} \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.229

15714

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \sin \left (x \right ) \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.239

15715

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ y^{\prime \prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.253

15716

\begin{align*} 2 y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.767

15717

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.826

15718

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_y]]

1.029

15719

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.389

15720

\begin{align*} 4 y+y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.967

15721

\begin{align*} y^{\prime \prime }-4 y&=\left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.200

15722

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=\left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.329

15723

\begin{align*} y^{\prime }+3 y&=\delta \left (x -2\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.650

15724

\begin{align*} y^{\prime }-3 y&=\delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.073

15725

\begin{align*} y^{\prime \prime }+9 y&=\delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.812

15726

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \delta \left (x -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.856

15727

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=\cos \left (x \right )+2 \delta \left (x -\pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.353

15728

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \delta \left (x -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.559

15729

\begin{align*} y^{\prime \prime }+a^{2} y&=\delta \left (x -\pi \right ) f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.750

15730

\begin{align*} y_{1}^{\prime }&=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

system_of_ODEs

0.429

15731

\begin{align*} y_{1}^{\prime }&=y_{1}-2 y_{2} \\ y_{2}^{\prime }&=y_{1}+3 y_{2} \\ \end{align*}

system_of_ODEs

0.569

15732

\begin{align*} y_{1}^{\prime }&=y_{1}+2 y_{2}+x -1 \\ y_{2}^{\prime }&=3 y_{1}+2 y_{2}-5 x -2 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -2 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.730

15733

\begin{align*} y_{1}^{\prime }&=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }&=2 y_{1}+1-6 x \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= -2 \\ y_{2} \left (1\right ) &= -5 \\ \end{align*}

system_of_ODEs

0.044

15734

\begin{align*} y_{1}^{\prime }&=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }&=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (-1\right ) &= 3 \\ y_{2} \left (-1\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.049

15735

\begin{align*} y_{1}^{\prime }&=3 y_{1}-2 y_{2} \\ y_{2}^{\prime }&=y_{2}-y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.679

15736

\begin{align*} y_{1}^{\prime }&=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }&=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 1 \\ y_{2} \left (1\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.064

15737

\begin{align*} y_{1}^{\prime }&=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }&=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (2\right ) &= 1 \\ y_{2} \left (2\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.050

15738

\begin{align*} y_{1}^{\prime }&={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }&=\frac {y_{1}}{\left (x -2\right )^{2}} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.055

15739

\begin{align*} y_{1}^{\prime }&={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }&=\frac {y_{1}}{\left (x -2\right )^{2}} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (3\right ) &= 1 \\ y_{2} \left (3\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.046

15740

\(\left [\begin {array}{cc} -2 & -4 \\ 1 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.247

15741

\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.305

15742

\(\left [\begin {array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.503

15743

\(\left [\begin {array}{ccc} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.392

15744

\(\left [\begin {array}{ccc} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.504

15745

\(\left [\begin {array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.517

15746

\(\left [\begin {array}{cccc} 1 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ 3 & 9 & 15 & 21 \\ 6 & 18 & 30 & 42 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.549

15747

\(\left [\begin {array}{ccccc} 1 & 3 & 5 & 2 & 4 \\ 5 & 2 & 4 & 1 & 3 \\ 4 & 1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

6.908

15748

\begin{align*} y_{1}^{\prime }&=2 y_{1}-3 y_{2}+5 \,{\mathrm e}^{x} \\ y_{2}^{\prime }&=y_{1}+4 y_{2}-2 \,{\mathrm e}^{-x} \\ \end{align*}

system_of_ODEs

2.187

15749

\begin{align*} y_{1}^{\prime }&=y_{2}-2 y_{1}+\sin \left (2 x \right ) \\ y_{2}^{\prime }&=-3 y_{1}+y_{2}-2 \cos \left (3 x \right ) \\ \end{align*}

system_of_ODEs

3.790

15750

\begin{align*} y_{1}^{\prime }&=2 y_{2} \\ y_{2}^{\prime }&=3 y_{1} \\ y_{3}^{\prime }&=2 y_{3}-y_{1} \\ \end{align*}

system_of_ODEs

0.892

15751

\begin{align*} y_{1}^{\prime }&=2 x y_{1}-x^{2} y_{2}+4 x \\ y_{2}^{\prime }&={\mathrm e}^{x} y_{1}+3 \,{\mathrm e}^{-x} y_{2}-\cos \left (3 x \right ) \\ \end{align*}

system_of_ODEs

0.048

15752

\begin{align*} y_{1}^{\prime }&=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

system_of_ODEs

0.395

15753

\begin{align*} y_{1}^{\prime }&=2 y_{1}-3 y_{2}+4 x -2 \\ y_{2}^{\prime }&=y_{1}-2 y_{2}+3 x \\ \end{align*}

system_of_ODEs

0.776

15754

\begin{align*} y_{1}^{\prime }&=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }&=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \\ \end{align*}

system_of_ODEs

0.044

15755

\begin{align*} y_{1}^{\prime }&=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }&=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \\ \end{align*}

system_of_ODEs

0.043

15756

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2}-2 y_{3} \\ y_{2}^{\prime }&=3 y_{2}-2 y_{3} \\ y_{3}^{\prime }&=3 y_{1}+y_{2}-3 y_{3} \\ \end{align*}

system_of_ODEs

0.689

15757

\begin{align*} y_{1}^{\prime }&=5 y_{1}-5 y_{2}-5 y_{3} \\ y_{2}^{\prime }&=-y_{1}+4 y_{2}+2 y_{3} \\ y_{3}^{\prime }&=3 y_{1}-5 y_{2}-3 y_{3} \\ \end{align*}

system_of_ODEs

1.109

15758

\begin{align*} y_{1}^{\prime }&=4 y_{1}+6 y_{2}+6 y_{3} \\ y_{2}^{\prime }&=y_{1}+3 y_{2}+2 y_{3} \\ y_{3}^{\prime }&=-y_{1}-4 y_{2}-3 y_{3} \\ \end{align*}

system_of_ODEs

0.747

15759

\begin{align*} y_{1}^{\prime }&=y_{1}+2 y_{2}-3 y_{3} \\ y_{2}^{\prime }&=-3 y_{1}+4 y_{2}-2 y_{3} \\ y_{3}^{\prime }&=2 y_{1}+y_{3} \\ \end{align*}

system_of_ODEs

1.123

15760

\begin{align*} y_{1}^{\prime }&=-2 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }&=-y_{1}-2 y_{2}-y_{3} \\ y_{3}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ \end{align*}

system_of_ODEs

0.573

15761

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2}+2 y_{3} \\ y_{2}^{\prime }&=y_{1}+y_{2}+2 y_{3} \\ y_{3}^{\prime }&=2 y_{1}+2 y_{2}+4 y_{3} \\ \end{align*}

system_of_ODEs

0.573

15762

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2} \\ y_{2}^{\prime }&=-y_{1}+2 y_{2} \\ y_{3}^{\prime }&=3 y_{3}-4 y_{4} \\ y_{4}^{\prime }&=4 y_{3}+3 y_{4} \\ \end{align*}

system_of_ODEs

1.257

15763

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=-3 y_{1}+2 y_{3} \\ y_{3}^{\prime }&=y_{4} \\ y_{4}^{\prime }&=2 y_{1}-5 y_{3} \\ \end{align*}

system_of_ODEs

4.013

15764

\begin{align*} y_{1}^{\prime }&=3 y_{1}+2 y_{2} \\ y_{2}^{\prime }&=3 y_{2}-2 y_{1} \\ y_{3}^{\prime }&=y_{3} \\ y_{4}^{\prime }&=2 y_{4} \\ \end{align*}

system_of_ODEs

1.041

15765

\begin{align*} y_{1}^{\prime }&=y_{2}+y_{4} \\ y_{2}^{\prime }&=y_{1}-y_{3} \\ y_{3}^{\prime }&=y_{4} \\ y_{4}^{\prime }&=y_{3} \\ \end{align*}

system_of_ODEs

0.739

15766

\begin{align*} x^{\prime }&=-2 x+3 y \\ y^{\prime }&=-x+2 y \\ \end{align*}

system_of_ODEs

0.403

15767

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

system_of_ODEs

0.317

15768

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=2 x-3 y \\ \end{align*}

system_of_ODEs

0.994

15769

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=5 x+y \\ \end{align*}

system_of_ODEs

0.435

15770

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}

system_of_ODEs

0.407

15771

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.404

15772

\begin{align*} x^{\prime }&=-5 x-y+2 \\ y^{\prime }&=3 x-y-3 \\ \end{align*}

system_of_ODEs

0.889

15773

\begin{align*} x^{\prime }&=3 x-2 y-6 \\ y^{\prime }&=4 x-y+2 \\ \end{align*}

system_of_ODEs

1.015

15774

\begin{align*} y^{\prime }&=\frac {1+y}{t +1} \\ \end{align*}

[_separable]

2.588

15775

\begin{align*} y^{\prime }&=t^{2} y^{2} \\ \end{align*}

[_separable]

4.385

15776

\begin{align*} y^{\prime }&=t^{4} y \\ \end{align*}

[_separable]

2.142

15777

\begin{align*} y^{\prime }&=2 y+1 \\ \end{align*}

[_quadrature]

0.529

15778

\begin{align*} y^{\prime }&=2-y \\ \end{align*}

[_quadrature]

0.441

15779

\begin{align*} y^{\prime }&={\mathrm e}^{-y} \\ \end{align*}

[_quadrature]

0.596

15780

\begin{align*} x^{\prime }&=1+x^{2} \\ \end{align*}

[_quadrature]

2.289

15781

\begin{align*} y^{\prime }&=2 t y^{2}+3 y^{2} \\ \end{align*}

[_separable]

3.200

15782

\begin{align*} y^{\prime }&=\frac {t}{y} \\ \end{align*}

[_separable]

5.184

15783

\begin{align*} y^{\prime }&=\frac {t}{y+t^{2} y} \\ \end{align*}

[_separable]

1.832

15784

\begin{align*} y^{\prime }&=t y^{{1}/{3}} \\ \end{align*}

[_separable]

12.329

15785

\begin{align*} y^{\prime }&=\frac {1}{2 y+1} \\ \end{align*}

[_quadrature]

1.069

15786

\begin{align*} y^{\prime }&=\frac {2 y+1}{t} \\ \end{align*}

[_separable]

3.221

15787

\begin{align*} y^{\prime }&=y \left (1-y\right ) \\ \end{align*}

[_quadrature]

1.369

15788

\begin{align*} y^{\prime }&=\frac {4 t}{1+3 y^{2}} \\ \end{align*}

[_separable]

1.822

15789

\begin{align*} v^{\prime }&=t^{2} v-2-2 v+t^{2} \\ \end{align*}

[_separable]

2.700

15790

\begin{align*} y^{\prime }&=\frac {1}{t y+t +y+1} \\ \end{align*}

[_separable]

2.450

15791

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{t} y}{1+y^{2}} \\ \end{align*}

[_separable]

2.319

15792

\begin{align*} y^{\prime }&=y^{2}-4 \\ \end{align*}

[_quadrature]

4.991

15793

\begin{align*} w^{\prime }&=\frac {w}{t} \\ \end{align*}

[_separable]

2.168

15794

\begin{align*} y^{\prime }&=\sec \left (y\right ) \\ \end{align*}

[_quadrature]

1.353

15795

\begin{align*} x^{\prime }&=-t x \\ x \left (0\right ) &= \frac {1}{\sqrt {\pi }} \\ \end{align*}

[_separable]

2.585

15796

\begin{align*} y^{\prime }&=t y \\ y \left (0\right ) &= 3 \\ \end{align*}

[_separable]

2.332

15797

\begin{align*} y^{\prime }&=-y^{2} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

3.010

15798

\begin{align*} y^{\prime }&=t^{2} y^{3} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

17.766

15799

\begin{align*} y^{\prime }&=-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.915

15800

\begin{align*} y^{\prime }&=\frac {t}{y-t^{2} y} \\ y \left (0\right ) &= 4 \\ \end{align*}

[_separable]

2.332