2.2.156 Problems 15501 to 15600

Table 2.325: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15501

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.161

15502

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.786

15503

\begin{align*} {y^{\prime }}^{2}-4 y&=0 \\ \end{align*}

[_quadrature]

0.671

15504

\begin{align*} {y^{\prime }}^{2}-9 y x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.238

15505

\begin{align*} {y^{\prime }}^{2}&=x^{6} \\ \end{align*}

[_quadrature]

0.200

15506

\begin{align*} y^{\prime }-2 y x&=0 \\ \end{align*}

[_separable]

1.764

15507

\begin{align*} y^{\prime }+y&=x^{2}+2 x -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.063

15508

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

15509

\begin{align*} y^{\prime }&=x \sqrt {y} \\ \end{align*}

[_separable]

4.921

15510

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.296

15511

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ \end{align*}

[_quadrature]

1.480

15512

\begin{align*} x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y&=0 \\ \end{align*}

[_separable]

2.334

15513

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.331

15514

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.332

15515

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.341

15516

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.267

15517

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.126

15518

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y \left (2\right ) &= -4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.278

15519

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.336

15520

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -12 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.392

15521

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y^{\prime }\left (1\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.389

15522

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.108

15523

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.036

15524

\begin{align*} y^{\prime }&=1-x \\ \end{align*}

[_quadrature]

0.226

15525

\begin{align*} y^{\prime }&=x -1 \\ \end{align*}

[_quadrature]

0.236

15526

\begin{align*} y^{\prime }&=1-y \\ \end{align*}

[_quadrature]

0.441

15527

\begin{align*} y^{\prime }&=1+y \\ \end{align*}

[_quadrature]

0.419

15528

\begin{align*} y^{\prime }&=y^{2}-4 \\ \end{align*}

[_quadrature]

3.664

15529

\begin{align*} y^{\prime }&=4-y^{2} \\ \end{align*}

[_quadrature]

3.389

15530

\begin{align*} y^{\prime }&=y x \\ \end{align*}

[_separable]

1.800

15531

\begin{align*} y^{\prime }&=-y x \\ \end{align*}

[_separable]

1.743

15532

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ \end{align*}

[_Riccati]

5.023

15533

\begin{align*} y^{\prime }&=y^{2}-x^{2} \\ \end{align*}

[_Riccati]

4.477

15534

\begin{align*} y^{\prime }&=x +y \\ \end{align*}

[[_linear, ‘class A‘]]

0.803

15535

\begin{align*} y^{\prime }&=y x \\ \end{align*}

[_separable]

1.766

15536

\begin{align*} y^{\prime }&=\frac {x}{y} \\ \end{align*}

[_separable]

4.040

15537

\begin{align*} y^{\prime }&=\frac {y}{x} \\ \end{align*}

[_separable]

1.743

15538

\begin{align*} y^{\prime }&=1+y^{2} \\ \end{align*}

[_quadrature]

1.322

15539

\begin{align*} y^{\prime }&=y^{2}-3 y \\ \end{align*}

[_quadrature]

0.770

15540

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ \end{align*}

[_Abel]

0.994

15541

\begin{align*} y^{\prime }&={| y|} \\ \end{align*}

[_quadrature]

2.045

15542

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ \end{align*}

[_separable]

1.534

15543

\begin{align*} y^{\prime }&=\ln \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.248

15544

\begin{align*} y^{\prime }&=\frac {2 x -y}{x +3 y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.822

15545

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.790

15546

\begin{align*} y^{\prime }&=\frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \\ \end{align*}

[_linear]

2.585

15547

\begin{align*} y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.278

15548

\begin{align*} y^{\prime }&=\frac {1}{y x} \\ \end{align*}

[_separable]

2.217

15549

\begin{align*} y^{\prime }&=\ln \left (y-1\right ) \\ \end{align*}

[_quadrature]

0.549

15550

\begin{align*} y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\ \end{align*}

[_quadrature]

0.860

15551

\begin{align*} y^{\prime }&=\frac {y}{y-x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.807

15552

\begin{align*} y^{\prime }&=\frac {x}{y^{2}} \\ \end{align*}

[_separable]

2.434

15553

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ \end{align*}

[_separable]

3.082

15554

\begin{align*} y^{\prime }&=\frac {x y}{1-y} \\ \end{align*}

[_separable]

2.211

15555

\begin{align*} y^{\prime }&=\left (y x \right )^{{1}/{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

58.968

15556

\begin{align*} y^{\prime }&=\sqrt {\frac {y-4}{x}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

5.326

15557

\begin{align*} y^{\prime }&=-\frac {y}{x}+y^{{1}/{4}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13.977

15558

\begin{align*} y^{\prime }&=4 y-5 \\ y \left (1\right ) &= 4 \\ \end{align*}

[_quadrature]

0.797

15559

\begin{align*} y^{\prime }+3 y&=1 \\ y \left (-2\right ) &= 1 \\ \end{align*}

[_quadrature]

1.852

15560

\begin{align*} y^{\prime }&=a y+b \\ y \left (c \right ) &= d \\ \end{align*}

[_quadrature]

0.950

15561

\begin{align*} y^{\prime }&=x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \\ y \left (2\right ) &= -1 \\ \end{align*}

[_quadrature]

0.453

15562

\begin{align*} y^{\prime }&=y x +\frac {1}{x^{2}+1} \\ y \left (-5\right ) &= 0 \\ \end{align*}

[_linear]

5.428

15563

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_linear]

1.929

15564

\begin{align*} y^{\prime }&=\frac {y}{x}+\tan \left (x \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_linear]

3.167

15565

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\ y \left (3\right ) &= 4 \\ \end{align*}

[_linear]

4.384

15566

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\ y \left (1\right ) &= -3 \\ \end{align*}

[_linear]

3.957

15567

\begin{align*} y^{\prime }&=\cot \left (x \right ) y+\csc \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_linear]

1.957

15568

\begin{align*} y^{\prime }&=-x \sqrt {1-y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

25.853

15569

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (6\right ) &= -9 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.496

15570

\begin{align*} y^{\prime }&=1+3 x \\ y \left (1\right ) &= 2 \\ \end{align*}

[_quadrature]

0.338

15571

\begin{align*} y^{\prime }&=x +\frac {1}{x} \\ y \left (1\right ) &= 2 \\ \end{align*}

[_quadrature]

1.371

15572

\begin{align*} y^{\prime }&=2 \sin \left (x \right ) \\ y \left (\pi \right ) &= 1 \\ \end{align*}

[_quadrature]

0.377

15573

\begin{align*} y^{\prime }&=x \sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_quadrature]

0.394

15574

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_quadrature]

0.365

15575

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.322

15576

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-1} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_quadrature]

0.434

15577

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.381

15578

\begin{align*} y^{\prime }&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.533

15579

\begin{align*} y^{\prime }&=\tan \left (x \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_quadrature]

0.378

15580

\begin{align*} y^{\prime }&=3 y \\ y \left (0\right ) &= -1 \\ \end{align*}

[_quadrature]

1.088

15581

\begin{align*} y^{\prime }&=1-y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.496

15582

\begin{align*} y^{\prime }&=1-y \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.588

15583

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{y-x^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.119

15584

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= 2 \\ \end{align*}

[_separable]

2.185

15585

\begin{align*} y^{\prime }&=\frac {2 x}{y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

5.723

15586

\begin{align*} y^{\prime }&=y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.191

15587

\begin{align*} y^{\prime }&=y x +x \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

1.994

15588

\begin{align*} x \,{\mathrm e}^{y}+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.365

15589

\begin{align*} y-x^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

2.385

15590

\begin{align*} 2 y^{\prime } y&=1 \\ \end{align*}

[_quadrature]

0.719

15591

\begin{align*} 2 x y^{\prime } y+y^{2}&=-1 \\ \end{align*}

[_separable]

2.059

15592

\begin{align*} y^{\prime }&=\frac {-y x +1}{x^{2}} \\ \end{align*}

[_linear]

1.782

15593

\begin{align*} y^{\prime }&=-\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.425

15594

\begin{align*} y^{\prime }&=\frac {y^{2}}{-y x +1} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.429

15595

\begin{align*} y^{\prime }&=4 y+1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.756

15596

\begin{align*} y^{\prime }&=y x +2 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

1.424

15597

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= 2 \\ \end{align*}

[_separable]

2.940

15598

\begin{align*} y^{\prime }&=\frac {y}{x -1}+x^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

1.688

15599

\begin{align*} y^{\prime }&=\frac {y}{x}+\sin \left (x^{2}\right ) \\ y \left (-1\right ) &= -1 \\ \end{align*}

[_linear]

2.332

15600

\begin{align*} y^{\prime }&=\frac {2 y}{x}+{\mathrm e}^{x} \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_linear]

3.352