2.2.153 Problems 15201 to 15300

Table 2.319: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15201

\begin{align*} 3 y^{\prime \prime }+8 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.125

15202

\begin{align*} 2 y^{\prime \prime }+20 y^{\prime }+51 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.135

15203

\begin{align*} 4 y^{\prime \prime }+40 y^{\prime }+101 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.124

15204

\begin{align*} y^{\prime \prime }+6 y^{\prime }+34 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.145

15205

\begin{align*} y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -8 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.153

15206

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -6 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.175

15207

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.177

15208

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 5 \\ y^{\prime \prime }\left (0\right ) &= -20 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.187

15209

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ y^{\prime \prime }\left (0\right ) &= -24 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.182

15210

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ y^{\prime \prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.170

15211

\begin{align*} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 5 \\ y^{\prime \prime \prime }\left (0\right ) &= 19 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.227

15212

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=9 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.165

15213

\begin{align*} 4 y^{\prime \prime }+16 y^{\prime }+17 y&=17 t -1 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.153

15214

\begin{align*} 4 y^{\prime \prime }+5 y^{\prime }+4 y&=3 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.233

15215

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.120

15216

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= -{\frac {2}{13}} \\ y^{\prime }\left (0\right ) &= {\frac {1}{13}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.152

15217

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+17 y&=17 t -1 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.242

15218

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.109

15219

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=t +2 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.168

15220

\begin{align*} y+2 y^{\prime }&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.116

15221

\begin{align*} y^{\prime \prime }+8 y^{\prime }+20 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.190

15222

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=t^{2} \\ y \left (0\right ) &= -12 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.144

15223

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=4 \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.175

15224

\begin{align*} -y+y^{\prime }&={\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.080

15225

\begin{align*} 3 y^{\prime \prime }+5 y^{\prime }-2 y&=7 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.132

15226

\begin{align*} y+y^{\prime }&=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.282

15227

\begin{align*} -2 y+y^{\prime }&=4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.357

15228

\begin{align*} y^{\prime \prime }+9 y&=24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

15229

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

15230

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.263

15231

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )\right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.553

15232

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.852

15233

\begin{align*} y^{\prime \prime }+4 y&=3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= {\frac {3}{4}} \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

15234

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+5 y&=25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.356

15235

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= -{\frac {2}{3}} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.569

15236

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \\ y \left (0\right ) &= -6 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_y]]

0.572

15237

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.994

15238

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

15239

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

15240

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.728

15241

\begin{align*} y^{\prime \prime }+4 \pi ^{2} y&=3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.609

15242

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=3 \delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.400

15243

\begin{align*} y^{\prime \prime }+4 y^{\prime }+29 y&=5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.878

15244

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=1-\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.516

15245

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

15246

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.362

15247

\begin{align*} 10 Q^{\prime }+100 Q&=\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \\ Q \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.543

15248

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y&=8 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -3 \\ y^{\prime \prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.192

15249

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y&=4 t \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ y^{\prime \prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _with_linear_symmetries]]

0.181

15250

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y&=8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _linear, _nonhomogeneous]]

0.220

15251

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y&=-t^{2}+2 t -10 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _with_linear_symmetries]]

0.856

15252

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

2.572

15253

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

1.588

15254

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=t^{7} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.559

15255

\begin{align*} t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y&=\ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.012

15256

\begin{align*} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t}&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.226

15257

\begin{align*} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right )&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

15258

\begin{align*} t^{3} y^{\prime \prime }-2 t y^{\prime }+y&=t^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.960

15259

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.329

15260

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.376

15261

\begin{align*} y^{\prime \prime }-3 y^{\prime }-7 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.320

15262

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=5 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.089

15263

\begin{align*} 3 y^{\prime \prime }+5 y^{\prime }-2 y&=3 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

15264

\begin{align*} y^{\prime \prime \prime }&=2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.121

15265

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=3 x-4 y \\ \end{align*}

system_of_ODEs

0.355

15266

\begin{align*} x^{\prime }&=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }&=\frac {x}{2}-\frac {3 y}{2} \\ \end{align*}

system_of_ODEs

0.546

15267

\begin{align*} x^{\prime }-x+2 y&=0 \\ y^{\prime }+y-x&=0 \\ \end{align*}

system_of_ODEs

0.355

15268

\begin{align*} x^{\prime }+5 x-2 y&=0 \\ 2 x+y^{\prime }-y&=0 \\ \end{align*}

system_of_ODEs

0.523

15269

\begin{align*} x^{\prime }-3 x+2 y&=0 \\ y^{\prime }-x+3 y&=0 \\ \end{align*}

system_of_ODEs

0.470

15270

\begin{align*} x^{\prime }+x-z&=0 \\ x+y^{\prime }-y&=0 \\ z^{\prime }+x+2 y-3 z&=0 \\ \end{align*}

system_of_ODEs

0.520

15271

\begin{align*} x^{\prime }&=-\frac {x}{2}+2 y-3 z \\ y^{\prime }&=y-\frac {z}{2} \\ z^{\prime }&=-2 x+z \\ \end{align*}

system_of_ODEs

1.129

15272

\begin{align*} x^{\prime }+y^{\prime }&=y \\ x^{\prime }-y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.381

15273

\begin{align*} x^{\prime }+2 y^{\prime }&=t \\ x^{\prime }-y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.551

15274

\begin{align*} x^{\prime }-y^{\prime }&=x+y-t \\ 2 x^{\prime }+3 y^{\prime }&=2 x+6 \\ \end{align*}

system_of_ODEs

0.672

15275

\begin{align*} 2 x^{\prime }-y^{\prime }&=t \\ 3 x^{\prime }+2 y^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.493

15276

\begin{align*} 5 x^{\prime }-3 y^{\prime }&=x+y \\ 3 x^{\prime }-y^{\prime }&=t \\ \end{align*}

system_of_ODEs

0.554

15277

\begin{align*} x^{\prime }-4 y^{\prime }&=0 \\ 2 x^{\prime }-3 y^{\prime }&=t +y \\ \end{align*}

system_of_ODEs

0.524

15278

\begin{align*} 3 x^{\prime }+2 y^{\prime }&=\sin \left (t \right ) \\ x^{\prime }-2 y^{\prime }&=x+y+t \\ \end{align*}

system_of_ODEs

0.704

15279

\begin{align*} x^{\prime }&=-4 x+9 y+12 \,{\mathrm e}^{-t} \\ y^{\prime }&=-5 x+2 y \\ \end{align*}

system_of_ODEs

0.847

15280

\begin{align*} x^{\prime }&=-7 x+6 y+6 \,{\mathrm e}^{-t} \\ y^{\prime }&=-12 x+5 y+37 \\ \end{align*}

system_of_ODEs

1.051

15281

\begin{align*} x^{\prime }&=-7 x+10 y+18 \,{\mathrm e}^{t} \\ y^{\prime }&=-10 x+9 y+37 \\ \end{align*}

system_of_ODEs

1.329

15282

\begin{align*} x^{\prime }&=-14 x+39 y+78 \sinh \left (t \right ) \\ y^{\prime }&=-6 x+16 y+6 \cosh \left (t \right ) \\ \end{align*}

system_of_ODEs

1.362

15283

\begin{align*} x^{\prime }&=2 x+4 y-2 z-2 \sinh \left (t \right ) \\ y^{\prime }&=4 x+2 y-2 z+10 \cosh \left (t \right ) \\ z^{\prime }&=-x+3 y+z+5 \\ \end{align*}

system_of_ODEs

1.619

15284

\begin{align*} x^{\prime }&=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }&=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }&=-x+6 y+z+9 \\ \end{align*}

system_of_ODEs

1.493

15285

\begin{align*} x^{\prime }&=-2 x-2 y+4 z \\ y^{\prime }&=-2 x+y+2 z \\ z^{\prime }&=-4 x-2 y+6 z+{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.912

15286

\begin{align*} x^{\prime }&=3 x-2 y+3 z \\ y^{\prime }&=x-y+2 z+2 \,{\mathrm e}^{-t} \\ z^{\prime }&=-2 x+2 y-2 z \\ \end{align*}

system_of_ODEs

1.084

15287

\begin{align*} x^{\prime }&=7 x+y-1-6 \,{\mathrm e}^{t} \\ y^{\prime }&=-4 x+3 y+4 \,{\mathrm e}^{t}-3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.637

15288

\begin{align*} x^{\prime }&=3 x-2 y+24 \sin \left (t \right ) \\ y^{\prime }&=9 x-3 y+12 \cos \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.910

15289

\begin{align*} x^{\prime }&=7 x-4 y+10 \,{\mathrm e}^{t} \\ y^{\prime }&=3 x+14 y+6 \,{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

20.726

15290

\begin{align*} x^{\prime }&=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\ y^{\prime }&=-5 x+2 y+6 \,{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.688

15291

\begin{align*} x^{\prime }&=-3 x-3 y+z \\ y^{\prime }&=2 y+2 z+29 \,{\mathrm e}^{-t} \\ z^{\prime }&=5 x+y+z+39 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

28.240

15292

\begin{align*} x^{\prime }&=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }&=y+z-10 \cos \left (t \right ) \\ z^{\prime }&=x+z+2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

2.348

15293

\begin{align*} x^{\prime }&=-3 x+3 y+z+5 \sin \left (2 t \right ) \\ y^{\prime }&=x-5 y-3 z+5 \cos \left (2 t \right ) \\ z^{\prime }&=-3 x+7 y+3 z+23 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

2.867

15294

\begin{align*} x^{\prime }&=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\ y^{\prime }&=4 x-y+2 z+4 \,{\mathrm e}^{t} \\ z^{\prime }&=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

1.859

15295

\begin{align*} x^{\prime }&=x+5 y+10 \sinh \left (t \right ) \\ y^{\prime }&=19 x-13 y+24 \sinh \left (t \right ) \\ \end{align*}

system_of_ODEs

1.244

15296

\begin{align*} x^{\prime }&=9 x-3 y-6 t \\ y^{\prime }&=-x+11 y+10 t \\ \end{align*}

system_of_ODEs

1.116

15297

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.092

15298

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.142

15299

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

15300

\begin{align*} 4 y+y^{\prime \prime }&=2 \sec \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651