2.2.154 Problems 15301 to 15400

Table 2.321: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15301

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.838

15302

\begin{align*} y^{\prime \prime }+y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.694

15303

\begin{align*} x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

15304

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

15305

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.517

15306

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.440

15307

\begin{align*} y^{\prime \prime } x +4 y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.507

15308

\begin{align*} 2 y^{\prime \prime } x +\left (x +1\right ) y^{\prime }-k y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.770

15309

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.082

15310

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.141

15311

\begin{align*} 2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.589

15312

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.507

15313

\begin{align*} y^{\prime \prime }-x^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.499

15314

\begin{align*} y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.168

15315

\begin{align*} y^{\prime \prime } x +x^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.136

15316

\begin{align*} y^{\prime \prime }+\alpha ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.006

15317

\begin{align*} y^{\prime \prime }-\alpha ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.309

15318

\begin{align*} y^{\prime \prime }+\beta y^{\prime }+\gamma y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

15319

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

78.752

15320

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.619

15321

\begin{align*} y^{\prime \prime }+9 y&=18 t \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.151

15322

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=f \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

15323

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} t & 0\le t \le 3 \\ t +2 & 3<t \end {array}\right . \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.006

15324

\begin{align*} x^{\prime }+y^{\prime }+x&=0 \\ x^{\prime }-x+2 y^{\prime }&={\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.155

15325

\begin{align*} x^{\prime \prime }+2 t x^{\prime }-4 x&=1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_erf]

0.267

15326

\begin{align*} c v^{\prime \prime }+\frac {v^{\prime }}{r}+\frac {v}{L}&=\delta \left (-1+t \right )-\delta \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

15327

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

[_linear]

2.244

15328

\begin{align*} {y^{\prime }}^{2}-y^{\prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.193

15329

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.855

15330

\begin{align*} x y \left (1-{y^{\prime }}^{2}\right )&=\left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \\ \end{align*}

[_rational]

131.060

15331

\begin{align*} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.246

15332

\begin{align*} y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

15333

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.181

15334

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.360

15335

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

[_separable]

1.481

15336

\begin{align*} \left (1+u \right ) v+\left (1-v\right ) u v^{\prime }&=0 \\ \end{align*}

[_separable]

2.089

15337

\begin{align*} 1+y-\left (1-x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

1.710

15338

\begin{align*} \left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2}&=0 \\ \end{align*}

[_separable]

2.775

15339

\begin{align*} y-a +x^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

1.612

15340

\begin{align*} z-\left (-a^{2}+t^{2}\right ) z^{\prime }&=0 \\ \end{align*}

[_separable]

2.266

15341

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

2.228

15342

\begin{align*} 1+s^{2}-\sqrt {t}\, s^{\prime }&=0 \\ \end{align*}

[_separable]

2.490

15343

\begin{align*} r^{\prime }+r \tan \left (t \right )&=0 \\ \end{align*}

[_separable]

1.547

15344

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}}&=0 \\ \end{align*}

[_separable]

2.706

15345

\begin{align*} y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}}&=0 \\ \end{align*}

[_separable]

4.480

15346

\begin{align*} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

2.953

15347

\begin{align*} x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.047

15348

\begin{align*} y-x +\left (x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.675

15349

\begin{align*} y^{\prime } x +x +y&=0 \\ \end{align*}

[_linear]

2.275

15350

\begin{align*} x +y+\left (y-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.583

15351

\begin{align*} -y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.464

15352

\begin{align*} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.177

15353

\begin{align*} 2 \sqrt {s t}-s+t s^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.962

15354

\begin{align*} t -s+t s^{\prime }&=0 \\ \end{align*}

[_linear]

1.850

15355

\begin{align*} y^{2} y^{\prime } x&=x^{3}+y^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.601

15356

\begin{align*} x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right )&=y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.319

15357

\begin{align*} 3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

57.296

15358

\begin{align*} x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.727

15359

\begin{align*} x +2 y+1-\left (2 x -3\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

1.852

15360

\begin{align*} \frac {y-y^{\prime } x}{\sqrt {y^{2}+x^{2}}}&=m \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

16.886

15361

\begin{align*} \frac {y^{\prime } y+x}{\sqrt {y^{2}+x^{2}}}&=m \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

49.501

15362

\begin{align*} y+\frac {x}{y^{\prime }}&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.050

15363

\begin{align*} y^{\prime } y&=\sqrt {y^{2}+x^{2}}-x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.510

15364

\begin{align*} y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{3} \\ \end{align*}

[_linear]

2.236

15365

\begin{align*} y^{\prime }-\frac {a y}{x}&=\frac {x +1}{x} \\ \end{align*}

[_linear]

2.373

15366

\begin{align*} \left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3}&=0 \\ \end{align*}

[_linear]

1.888

15367

\begin{align*} s^{\prime } \cos \left (t \right )+s \sin \left (t \right )&=1 \\ \end{align*}

[_linear]

2.023

15368

\begin{align*} s^{\prime }+s \cos \left (t \right )&=\frac {\sin \left (2 t \right )}{2} \\ \end{align*}

[_linear]

2.318

15369

\begin{align*} y^{\prime }-\frac {n y}{x}&={\mathrm e}^{x} x^{n} \\ \end{align*}

[_linear]

1.892

15370

\begin{align*} y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\ \end{align*}

[_linear]

1.145

15371

\begin{align*} y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_linear, ‘class A‘]]

0.894

15372

\begin{align*} y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1&=0 \\ \end{align*}

[_linear]

2.041

15373

\begin{align*} y^{\prime }+y x&=x^{3} y^{3} \\ \end{align*}

[_Bernoulli]

1.616

15374

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2}&=0 \\ \end{align*}

[_separable]

4.086

15375

\begin{align*} 3 y^{2} y^{\prime }-a y^{3}-x -1&=0 \\ \end{align*}

[_rational, _Bernoulli]

1.796

15376

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.659

15377

\begin{align*} y^{\prime } x&=\left (y \ln \left (x \right )-2\right ) y \\ \end{align*}

[_Bernoulli]

3.329

15378

\begin{align*} y-\cos \left (x \right ) y^{\prime }&=y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \\ \end{align*}

[_Bernoulli]

5.780

15379

\begin{align*} x^{2}+y+\left (x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.473

15380

\begin{align*} y-3 x^{2}-\left (4 y-x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.503

15381

\begin{align*} \left (y^{3}-x \right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational]

3.352

15382

\begin{align*} \frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.472

15383

\begin{align*} 6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

1.734

15384

\begin{align*} \frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3.794

15385

\begin{align*} \frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4.681

15386

\begin{align*} \frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\ \end{align*}

[_separable]

2.541

15387

\begin{align*} y^{\prime } y+x&=\frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.336

15388

\begin{align*} y&=2 y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.344

15389

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.493

15390

\begin{align*} y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.642

15391

\begin{align*} y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.994

15392

\begin{align*} y&=y^{\prime } y+y^{\prime }-{y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

0.170

15393

\begin{align*} y&=y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.428

15394

\begin{align*} y&=y^{\prime } x +y^{\prime } \\ \end{align*}

[_separable]

1.759

15395

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.509

15396

\begin{align*} y&=y^{\prime } x -\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.585

15397

\begin{align*} y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\ \end{align*}

[_linear]

2.178

15398

\begin{align*} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

15399

\begin{align*} y^{\prime \prime }&=\frac {1}{2 y^{\prime }} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

1.107

15400

\begin{align*} x y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.167