| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.838 |
|
| \begin{align*}
y^{\prime \prime }+y&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
2 y^{\prime \prime } x +\left (x +1\right ) y^{\prime }-k y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✗ |
✗ |
✓ |
✗ |
0.082 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.141 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| \begin{align*}
y^{\prime \prime }-x^{2} y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.499 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| \begin{align*}
y^{\prime \prime } x +x^{2} y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.136 |
|
| \begin{align*}
y^{\prime \prime }+\alpha ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.006 |
|
| \begin{align*}
y^{\prime \prime }-\alpha ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.309 |
|
| \begin{align*}
y^{\prime \prime }+\beta y^{\prime }+\gamma y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.376 |
|
| \begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[_Gegenbauer] |
✗ |
✓ |
✓ |
✗ |
78.752 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.619 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=18 t \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=f \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} t & 0\le t \le 3 \\ t +2 & 3<t \end {array}\right . \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.006 |
|
| \begin{align*}
x^{\prime }+y^{\prime }+x&=0 \\
x^{\prime }-x+2 y^{\prime }&={\mathrm e}^{-t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
x^{\prime \prime }+2 t x^{\prime }-4 x&=1 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_erf] |
✓ |
✓ |
✓ |
✗ |
0.267 |
|
| \begin{align*}
c v^{\prime \prime }+\frac {v^{\prime }}{r}+\frac {v}{L}&=\delta \left (-1+t \right )-\delta \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.244 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| \begin{align*}
x y \left (1-{y^{\prime }}^{2}\right )&=\left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \\
\end{align*} |
[_rational] |
✓ |
✗ |
✓ |
✗ |
131.060 |
|
| \begin{align*}
y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\
\end{align*} |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.181 |
|
| \begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
\left (1+u \right ) v+\left (1-v\right ) u v^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.089 |
|
| \begin{align*}
1+y-\left (1-x \right ) y^{\prime }&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.710 |
|
| \begin{align*}
\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.775 |
|
| \begin{align*}
y-a +x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.612 |
|
| \begin{align*}
z-\left (-a^{2}+t^{2}\right ) z^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.266 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.228 |
|
| \begin{align*}
1+s^{2}-\sqrt {t}\, s^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.490 |
|
| \begin{align*}
r^{\prime }+r \tan \left (t \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.547 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.706 |
|
| \begin{align*}
y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.480 |
|
| \begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.953 |
|
| \begin{align*}
x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.047 |
|
| \begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.675 |
|
| \begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.275 |
|
| \begin{align*}
x +y+\left (y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.583 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.464 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.177 |
|
| \begin{align*}
2 \sqrt {s t}-s+t s^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.962 |
|
| \begin{align*}
t -s+t s^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.601 |
|
| \begin{align*}
x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right )&=y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.319 |
|
| \begin{align*}
3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
57.296 |
|
| \begin{align*}
x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.727 |
|
| \begin{align*}
x +2 y+1-\left (2 x -3\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| \begin{align*}
\frac {y-y^{\prime } x}{\sqrt {y^{2}+x^{2}}}&=m \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
16.886 |
|
| \begin{align*}
\frac {y^{\prime } y+x}{\sqrt {y^{2}+x^{2}}}&=m \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
49.501 |
|
| \begin{align*}
y+\frac {x}{y^{\prime }}&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.050 |
|
| \begin{align*}
y^{\prime } y&=\sqrt {y^{2}+x^{2}}-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.510 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.236 |
|
| \begin{align*}
y^{\prime }-\frac {a y}{x}&=\frac {x +1}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| \begin{align*}
\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.888 |
|
| \begin{align*}
s^{\prime } \cos \left (t \right )+s \sin \left (t \right )&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.023 |
|
| \begin{align*}
s^{\prime }+s \cos \left (t \right )&=\frac {\sin \left (2 t \right )}{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.318 |
|
| \begin{align*}
y^{\prime }-\frac {n y}{x}&={\mathrm e}^{x} x^{n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.892 |
|
| \begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
1.145 |
|
| \begin{align*}
y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.041 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.616 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.086 |
|
| \begin{align*}
3 y^{2} y^{\prime }-a y^{3}-x -1&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.796 |
|
| \begin{align*}
\left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
1.659 |
|
| \begin{align*}
y^{\prime } x&=\left (y \ln \left (x \right )-2\right ) y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.329 |
|
| \begin{align*}
y-\cos \left (x \right ) y^{\prime }&=y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.780 |
|
| \begin{align*}
x^{2}+y+\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.473 |
|
| \begin{align*}
y-3 x^{2}-\left (4 y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.503 |
|
| \begin{align*}
\left (y^{3}-x \right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| \begin{align*}
\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.472 |
|
| \begin{align*}
6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
1.734 |
|
| \begin{align*}
\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.794 |
|
| \begin{align*}
\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.681 |
|
| \begin{align*}
\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.541 |
|
| \begin{align*}
y^{\prime } y+x&=\frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.336 |
|
| \begin{align*}
y&=2 y^{\prime } x +{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.344 |
|
| \begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*} | [[_homogeneous, ‘class C‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.493 |
|
| \begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| \begin{align*}
y&=y^{\prime } y+y^{\prime }-{y^{\prime }}^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| \begin{align*}
y&=y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.428 |
|
| \begin{align*}
y&=y^{\prime } x +y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.759 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.509 |
|
| \begin{align*}
y&=y^{\prime } x -\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| \begin{align*}
2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.047 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1}{2 y^{\prime }} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| \begin{align*}
x y^{\prime \prime \prime }&=2 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.167 |
|