2.2.152 Problems 15101 to 15200

Table 2.317: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

15101

\begin{align*} {y^{\prime \prime }}^{3}+y^{\prime \prime }+1&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

194.753

15102

\begin{align*} x^{\prime \prime }+10 x^{\prime }+25 x&=2^{t}+t \,{\mathrm e}^{-5 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

15103

\begin{align*} -y^{\prime } y-x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.224

15104

\begin{align*} y^{\left (6\right )}-y&={\mathrm e}^{2 x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.121

15105

\begin{align*} y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime }&=x +{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.125

15106

\begin{align*} 6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.572

15107

\begin{align*} y^{\prime \prime } x&=y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.400

15108

\begin{align*} y^{\prime \prime }+y&=\sin \left (3 x \right ) \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

15109

\begin{align*} y^{\prime \prime }&=2 y^{3} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.438

15110

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.292

15111

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.361

15112

\begin{align*} x^{\prime }+5 x+y&={\mathrm e}^{t} \\ y^{\prime }-x-3 y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

1.511

15113

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=z \\ z^{\prime }&=x \\ \end{align*}

system_of_ODEs

1.225

15114

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

system_of_ODEs

0.024

15115

\begin{align*} y^{\prime }&=y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \\ \end{align*}

[_separable]

1.657

15116

\begin{align*} x^{2} y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

1.861

15117

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

0.898

15118

\begin{align*} x \left ({\mathrm e}^{y}+4\right )&={\mathrm e}^{x +y} y^{\prime } \\ \end{align*}

[_separable]

2.569

15119

\begin{align*} y^{\prime }&=\cos \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.000

15120

\begin{align*} y^{\prime } x +y&=x y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.615

15121

\begin{align*} y^{\prime }&=t \ln \left (y^{2 t}\right )+t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.292

15122

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{y^{2}-x} \\ \end{align*}

[_separable]

1.451

15123

\begin{align*} y^{\prime }&=\ln \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

0.431

15124

\begin{align*} x \left (1+y\right )^{2}&=\left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \\ \end{align*}

[_separable]

2.447

15125

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.355

15126

\begin{align*} y^{\prime \prime \prime }+y x&=\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.030

15127

\begin{align*} y^{\prime } y+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

31.589

15128

\begin{align*} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime }&=2 x^{2}+3 \\ \end{align*}

[[_high_order, _missing_y]]

0.145

15129

\begin{align*} y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.027

15130

\begin{align*} y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.027

15131

\begin{align*} \cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x^{2}}&=\sinh \left (x \right ) \\ \end{align*}

[_linear]

24.861

15132

\begin{align*} y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.028

15133

\begin{align*} y^{\prime } y&=1 \\ \end{align*}

[_quadrature]

0.497

15134

\begin{align*} \sinh \left (x \right ) {y^{\prime }}^{2}+3 y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

26.590

15135

\begin{align*} 5 y^{\prime }-y x&=0 \\ \end{align*}

[_separable]

1.391

15136

\begin{align*} {y^{\prime }}^{2} \sqrt {y}&=\sin \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.912

15137

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y&=1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.171

15138

\begin{align*} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.075

15139

\begin{align*} x^{2} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.695

15140

\begin{align*} y^{\prime \prime }&=y+x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.291

15141

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime } x -y^{2}&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.030

15142

\begin{align*} {y^{\prime }}^{2}+x y {y^{\prime }}^{2}&=\ln \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

12.144

15143

\begin{align*} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.031

15144

\begin{align*} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=y x \\ \end{align*}

[NONE]

0.208

15145

\begin{align*} y y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.412

15146

\begin{align*} {y^{\prime \prime \prime }}^{2}+\sqrt {y}&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.033

15147

\begin{align*} y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

15148

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.080

15149

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.188

15150

\begin{align*} 3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.059

15151

\begin{align*} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right )&=x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.357

15152

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.052

15153

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.237

15154

\begin{align*} y^{\prime \prime } x +2 x^{2} y^{\prime }+y \sin \left (x \right )&=\sinh \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.133

15155

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y&=1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.605

15156

\begin{align*} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.678

15157

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.600

15158

\begin{align*} x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.668

15159

\begin{align*} y^{\prime \prime }+\frac {k x}{y^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.277

15160

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.495

15161

\begin{align*} y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.629

15162

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+4 y x&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.013

15163

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.979

15164

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.291

15165

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.428

15166

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.987

15167

\begin{align*} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.751

15168

\begin{align*} y^{\prime \prime } x +x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.602

15169

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.617

15170

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.576

15171

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x}&=1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.721

15172

\begin{align*} y^{\prime \prime } x +\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

12.254

15173

\begin{align*} \frac {x y^{\prime \prime }}{1+y}+\frac {y^{\prime } y-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}}&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.904

15174

\begin{align*} \left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

10.063

15175

\begin{align*} y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.556

15176

\begin{align*} \left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.615

15177

\begin{align*} \left (\cos \left (y\right )-\sin \left (y\right ) y\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right )&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.796

15178

\begin{align*} y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

15179

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime }&=\left (25-6 x \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.465

15180

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (2+x \right ) y}{x^{2} \left (x +1\right )}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.471

15181

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.431

15182

\begin{align*} \frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x}&=3 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.406

15183

\begin{align*} \left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.296

15184

\begin{align*} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}}&=\frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

15185

\begin{align*} y^{\prime \prime }+\left (5+2 x \right ) y^{\prime }+\left (4 x +8\right ) y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.479

15186

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.151

15187

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.150

15188

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.114

15189

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.129

15190

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.108

15191

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+37 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.148

15192

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.120

15193

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.125

15194

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.128

15195

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.148

15196

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.089

15197

\begin{align*} y^{\prime \prime \prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= \frac {\sqrt {2}}{2} \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.296

15198

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.126

15199

\begin{align*} y^{\prime \prime }-20 y^{\prime }+51 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -14 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.115

15200

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.121