2.2.127 Problems 12601 to 12700

Table 2.267: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

12601

\begin{align*} y^{\prime \prime }&=\frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

12602

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

193.192

12603

\begin{align*} y^{\prime \prime }&=\frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.481

12604

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

140.835

12605

\begin{align*} y^{\prime \prime }&=-\frac {a y}{x^{4}} \\ \end{align*}

[[_Emden, _Fowler]]

0.293

12606

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} a \left (-a +1\right )-b \left (x +b \right )\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.184

12607

\begin{align*} y^{\prime \prime }&=-\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.147

12608

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

12609

\begin{align*} y^{\prime \prime }&=\frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (\left (a +b \right ) x +a b \right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.458

12610

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \\ \end{align*}

[[_Emden, _Fowler]]

0.200

12611

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.362

12612

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.338

12613

\begin{align*} y^{\prime \prime }&=-\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.664

12614

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.253

12615

\begin{align*} y^{\prime \prime }&=-\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.683

12616

\begin{align*} y^{\prime \prime }&=\frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.741

12617

\begin{align*} y^{\prime \prime }&=\frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.497

12618

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.848

12619

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

97.404

12620

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

138.705

12621

\begin{align*} y^{\prime \prime }&=\frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.463

12622

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.358

12623

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

41.355

12624

\begin{align*} y^{\prime \prime }&=\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.711

12625

\begin{align*} x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

172.310

12626

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

137.477

12627

\begin{align*} y^{\prime \prime }&=\frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (a -1\right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (a -1\right )-v \left (v +1\right )\right )-a \left (a +1\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.069

12628

\begin{align*} y^{\prime \prime }&=-\frac {a y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[_Halm]

0.370

12629

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.513

12630

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

97.415

12631

\begin{align*} y^{\prime \prime }&=-\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

72.447

12632

\begin{align*} y^{\prime \prime }&=-\frac {a y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

12633

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.845

12634

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

67.661

12635

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

102.747

12636

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

97.168

12637

\begin{align*} y^{\prime \prime }&=\frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

129.267

12638

\begin{align*} y^{\prime \prime }&=-\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

171.187

12639

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.647

12640

\begin{align*} y^{\prime \prime }&=-\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.556

12641

\begin{align*} y^{\prime \prime }&=-\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

12642

\begin{align*} y^{\prime \prime }&=\frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.651

12643

\begin{align*} y^{\prime \prime }&=-\frac {b y}{x^{2} \left (x -a \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.458

12644

\begin{align*} y^{\prime \prime }&=-\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.947

12645

\begin{align*} y^{\prime \prime }&=\frac {c y}{\left (x -a \right )^{2} \left (-b +x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.671

12646

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (-b +x \right )+\left (1-\alpha -\beta \right ) \left (-b +x \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (-b +x \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (-b +x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.280

12647

\begin{align*} y^{\prime \prime }&=-\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.415

12648

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \\ \end{align*}

[_Halm]

0.457

12649

\begin{align*} y^{\prime \prime }&=\frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.659

12650

\begin{align*} y^{\prime \prime }&=\frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.408

12651

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-a^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.263

12652

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (-v \left (v +1\right ) \left (x -1\right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

37.765

12653

\begin{align*} y^{\prime \prime }&=-\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.221

12654

\begin{align*} y^{\prime \prime }&=\frac {\left (7 a \,x^{2}+5\right ) y^{\prime }}{x \left (a \,x^{2}+1\right )}-\frac {\left (15 a \,x^{2}+5\right ) y}{x^{2} \left (a \,x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.508

12655

\begin{align*} y^{\prime \prime }&=-\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

109.396

12656

\begin{align*} y^{\prime \prime }&=-\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.880

12657

\begin{align*} y^{\prime \prime }&=-\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.461

12658

\begin{align*} y^{\prime \prime }&=-\frac {y}{\left (a x +b \right )^{4}} \\ \end{align*}

[[_Emden, _Fowler]]

0.335

12659

\begin{align*} y^{\prime \prime }&=-\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}} \\ \end{align*}

[[_Emden, _Fowler]]

0.892

12660

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.562

12661

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

123.629

12662

\begin{align*} y^{\prime \prime }&=\frac {\left (1+3 x \right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.479

12663

\begin{align*} y^{\prime \prime }&=\frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \\ \end{align*}

[[_Emden, _Fowler]]

0.261

12664

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.586

12665

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (a +1\right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

190.898

12666

\begin{align*} y^{\prime \prime }&=-\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1012.565

12667

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

12668

\begin{align*} y^{\prime \prime }&=\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

12669

\begin{align*} y^{\prime \prime }&=-\frac {27 x y}{16 \left (x^{3}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.676

12670

\begin{align*} y^{\prime \prime }&=-\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1105.003

12671

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.107

12672

\begin{align*} y^{\prime \prime }&=-a \,x^{2 a -1} x^{-2 a} y^{\prime }-b^{2} x^{-2 a} y \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.680

12673

\begin{align*} y^{\prime \prime }&=-\frac {\left (a p \,x^{b}+q \right ) y^{\prime }}{x \left (a \,x^{b}-1\right )}-\frac {\left (a r \,x^{b}+s \right ) y}{x^{2} \left (a \,x^{b}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.794

12674

\begin{align*} y^{\prime \prime }&=\frac {y}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.948

12675

\begin{align*} y^{\prime \prime }&=\frac {y^{\prime }}{x \ln \left (x \right )}+\ln \left (x \right )^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.559

12676

\begin{align*} y^{\prime \prime }&=\frac {y^{\prime }}{x \left (\ln \left (x \right )-1\right )}-\frac {y}{x^{2} \left (\ln \left (x \right )-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.282

12677

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.324

12678

\begin{align*} y^{\prime \prime }&=-\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.788

12679

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.806

12680

\begin{align*} y^{\prime \prime }&=-\frac {\left (\sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }}{\sin \left (x \right )}-y \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.947

12681

\begin{align*} y^{\prime \prime }&=-\frac {x \sin \left (x \right ) y^{\prime }}{\cos \left (x \right ) x -\sin \left (x \right )}+\frac {\sin \left (x \right ) y}{\cos \left (x \right ) x -\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.412

12682

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} \sin \left (x \right )-2 \cos \left (x \right ) x \right ) y^{\prime }}{x^{2} \cos \left (x \right )}-\frac {\left (2 \cos \left (x \right )-x \sin \left (x \right )\right ) y}{x^{2} \cos \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.748

12683

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }-\left (a \cos \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.007

12684

\begin{align*} y^{\prime \prime }&=-\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.924

12685

\begin{align*} y^{\prime \prime }&=\frac {2 y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.382

12686

\begin{align*} y^{\prime \prime }&=-\frac {a y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.277

12687

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.921

12688

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.889

12689

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.050

12690

\begin{align*} y^{\prime \prime }&=-\frac {\left (-\left (a^{2} b^{2}-\left (a +1\right )^{2}\right ) \sin \left (x \right )^{2}-a \left (a +1\right ) b \sin \left (2 x \right )-a \left (a -1\right )\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.138

12691

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.534

12692

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.624

12693

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.066

12694

\begin{align*} y^{\prime \prime }&=\frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.015

12695

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.698

12696

\begin{align*} y^{\prime \prime }&=-\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+\sin \left (x \right )^{2} x^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.066

12697

\begin{align*} y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.696

12698

\begin{align*} y^{\prime \prime }&=-\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.777

12699

\begin{align*} y^{\prime \prime }&=-\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.161

12700

\begin{align*} y^{\prime \prime }&=\frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.435