| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }&=\frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
193.192 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.481 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
140.835 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {a y}{x^{4}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{2} a \left (-a +1\right )-b \left (x +b \right )\right ) y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.184 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.147 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (\left (a +b \right ) x +a b \right ) y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
6.362 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
29.338 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.253 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.683 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.741 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.497 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.848 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
97.404 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
138.705 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.463 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
32.358 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
41.355 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.711 |
|
| \begin{align*}
x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
172.310 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
137.477 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (a -1\right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (a -1\right )-v \left (v +1\right )\right )-a \left (a +1\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.069 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {a y}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
[_Halm] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.513 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
97.415 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
72.447 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {a y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.845 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
67.661 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✗ | ✓ | ✓ | ✗ | 102.747 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
97.168 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
129.267 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
171.187 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
5.647 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.651 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {b y}{x^{2} \left (x -a \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.947 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {c y}{\left (x -a \right )^{2} \left (-b +x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.671 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (-b +x \right )+\left (1-\alpha -\beta \right ) \left (-b +x \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (-b +x \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (-b +x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.280 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.415 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \\
\end{align*} |
[_Halm] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.659 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-a^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
36.263 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (-v \left (v +1\right ) \left (x -1\right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
37.765 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (7 a \,x^{2}+5\right ) y^{\prime }}{x \left (a \,x^{2}+1\right )}-\frac {\left (15 a \,x^{2}+5\right ) y}{x^{2} \left (a \,x^{2}+1\right )} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.508 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
109.396 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (x -1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
4.880 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.461 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {y}{\left (a x +b \right )^{4}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.335 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.892 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.562 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
123.629 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (1+3 x \right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.479 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.586 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (a +1\right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
190.898 |
|
| \begin{align*}
y^{\prime \prime }&=-\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1012.565 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.268 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {27 x y}{16 \left (x^{3}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.676 |
|
| \begin{align*}
y^{\prime \prime }&=-\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1105.003 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
5.107 |
|
| \begin{align*}
y^{\prime \prime }&=-a \,x^{2 a -1} x^{-2 a} y^{\prime }-b^{2} x^{-2 a} y \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.680 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (a p \,x^{b}+q \right ) y^{\prime }}{x \left (a \,x^{b}-1\right )}-\frac {\left (a r \,x^{b}+s \right ) y}{x^{2} \left (a \,x^{b}-1\right )} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✗ | ✓ | ✓ | ✗ | 16.794 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {y}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {y^{\prime }}{x \ln \left (x \right )}+\ln \left (x \right )^{2} y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.559 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {y^{\prime }}{x \left (\ln \left (x \right )-1\right )}-\frac {y}{x^{2} \left (\ln \left (x \right )-1\right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
4.324 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
13.788 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.806 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (\sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }}{\sin \left (x \right )}-y \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.947 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {x \sin \left (x \right ) y^{\prime }}{\cos \left (x \right ) x -\sin \left (x \right )}+\frac {\sin \left (x \right ) y}{\cos \left (x \right ) x -\sin \left (x \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.412 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{2} \sin \left (x \right )-2 \cos \left (x \right ) x \right ) y^{\prime }}{x^{2} \cos \left (x \right )}-\frac {\left (2 \cos \left (x \right )-x \sin \left (x \right )\right ) y}{x^{2} \cos \left (x \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
0.748 |
|
| \begin{align*}
\cos \left (x \right )^{2} y^{\prime \prime }-\left (a \cos \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.007 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.924 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {2 y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {a y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.277 |
|
| \begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.921 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.889 |
|
| \begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
11.050 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (-\left (a^{2} b^{2}-\left (a +1\right )^{2}\right ) \sin \left (x \right )^{2}-a \left (a +1\right ) b \sin \left (2 x \right )-a \left (a -1\right )\right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
7.138 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✗ | ✓ | ✓ | ✗ | 2.534 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
4.624 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.066 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.015 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.698 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+\sin \left (x \right )^{2} x^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
5.066 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
4.696 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.777 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.161 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.435 |
|