2.2.128 Problems 12701 to 12800

Table 2.269: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

12701

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.796

12702

\begin{align*} y^{\prime \prime }&=-\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.417

12703

\begin{align*} y^{\prime \prime }&=-\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.660

12704

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.860

12705

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.253

12706

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.262

12707

\begin{align*} y^{\prime \prime }&=-\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

12708

\begin{align*} y^{\prime \prime \prime }-\lambda y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.057

12709

\begin{align*} y^{\prime \prime \prime }+y a \,x^{3}-b x&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.030

12710

\begin{align*} y^{\prime \prime \prime }-a \,x^{b} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.027

12711

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.051

12712

\begin{align*} y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.207

12713

\begin{align*} a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.029

12714

\begin{align*} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-a b y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

12715

\begin{align*} y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

12716

\begin{align*} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

12717

\begin{align*} y f^{\prime }\left (x \right )+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.034

12718

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

12719

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.515

12720

\begin{align*} y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x}&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.128

12721

\begin{align*} y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.155

12722

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime } x +2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

12723

\begin{align*} a^{3} x^{3} y+3 a^{2} x^{2} y^{\prime }+3 a x y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

12724

\begin{align*} y^{\prime \prime \prime }-\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+y \sin \left (x \right )-\ln \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.241

12725

\begin{align*} f \left (x \right ) y+y^{\prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.030

12726

\begin{align*} y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y\right )&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

12727

\begin{align*} 18 \,{\mathrm e}^{x}-3 y-11 y^{\prime }-8 y^{\prime \prime }+4 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.103

12728

\begin{align*} x y^{\prime \prime \prime }+3 y^{\prime \prime }+y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.027

12729

\begin{align*} x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

12730

\begin{align*} x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-y^{\prime } x -a y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.034

12731

\begin{align*} x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

12732

\begin{align*} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-f \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.222

12733

\begin{align*} 2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.032

12734

\begin{align*} 2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

12735

\begin{align*} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

12736

\begin{align*} \left (x -2\right ) x y^{\prime \prime \prime }-x \left (x -2\right ) y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.452

12737

\begin{align*} \left (2 x -1\right ) y^{\prime \prime \prime }-8 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.030

12738

\begin{align*} \left (2 x -1\right ) y^{\prime \prime \prime }+\left (x +4\right ) y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.260

12739

\begin{align*} a \,x^{2} y-6 y^{\prime }+x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

12740

\begin{align*} x^{2} y^{\prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }-y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.032

12741

\begin{align*} x^{2} y^{\prime \prime \prime }-y^{\prime \prime } x +\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.202

12742

\begin{align*} x^{2} y^{\prime \prime \prime }+3 y^{\prime \prime } x +\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime }&=4 a^{3} x^{2 a -1} y \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.619

12743

\begin{align*} x^{2} y^{\prime \prime \prime }-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.047

12744

\begin{align*} x^{2} y^{\prime \prime \prime }+4 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime }+3 y x -f \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.038

12745

\begin{align*} x^{2} y^{\prime \prime \prime }+5 y^{\prime \prime } x +4 y^{\prime }-\ln \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.213

12746

\begin{align*} 6 y^{\prime }+6 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.181

12747

\begin{align*} a \,x^{2} y+6 y^{\prime }+6 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

12748

\begin{align*} x^{2} y^{\prime \prime \prime }-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.035

12749

\begin{align*} x^{2} y^{\prime \prime \prime }-2 \left (n +1\right ) x y^{\prime \prime }+\left (a \,x^{2}+6 n \right ) y^{\prime }-2 a x y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

12750

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

12751

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

12752

\begin{align*} x^{2} y^{\prime \prime \prime }-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

12753

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

12754

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime \prime }+8 y^{\prime \prime } x +10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.201

12755

\begin{align*} -2 y x +\left (x^{2}+2\right ) y^{\prime }-2 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

12756

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

12757

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

12758

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

12759

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.059

12760

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (8+x \right )&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.313

12761

\begin{align*} \left (-a^{2}+1\right ) x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.156

12762

\begin{align*} -2 \left (x^{2}+4\right ) y+x \left (x^{2}+8\right ) y^{\prime }-4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

12763

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.284

12764

\begin{align*} x^{3} y^{\prime \prime \prime }+3 \left (-a +1\right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.059

12765

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

12766

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 y^{\prime } x -y-2 x^{3}&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

8.345

12767

\begin{align*} -12 y+3 \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

12768

\begin{align*} \left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (2+x \right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

12769

\begin{align*} 2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.053

12770

\begin{align*} x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-4 \left (1+3 x \right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

12771

\begin{align*} 4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.285

12772

\begin{align*} x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

12773

\begin{align*} x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.030

12774

\begin{align*} x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.029

12775

\begin{align*} x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.051

12776

\begin{align*} \left (x -a \right )^{3} \left (-b +x \right )^{3} y^{\prime \prime \prime }-c y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.034

12777

\begin{align*} y^{\prime \prime \prime } \sin \left (x \right )+\left (1+2 \cos \left (x \right )\right ) y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-\cos \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.453

12778

\begin{align*} \sin \left (x \right )-y \cos \left (x \right )-3 \sin \left (x \right ) y^{\prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }+\left (x +\sin \left (x \right )\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.263

12779

\begin{align*} y^{\prime \prime \prime } \sin \left (x \right )^{2}+3 y^{\prime \prime } \sin \left (x \right ) \cos \left (x \right )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \sin \left (x \right )^{2}\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right )&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.059

12780

\begin{align*} y^{\prime \prime \prime }+y^{\prime } x +n y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.027

12781

\begin{align*} y^{\prime \prime \prime }-y^{\prime } x -n y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.027

12782

\begin{align*} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.031

12783

\begin{align*} y^{\prime \prime \prime \prime }+4 y-f&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.096

12784

\begin{align*} y^{\prime \prime \prime \prime }+\lambda y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.052

12785

\begin{align*} y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}}&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.161

12786

\begin{align*} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right )&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.708

12787

\begin{align*} y^{\prime \prime \prime \prime }+\left (1+\lambda \right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.065

12788

\begin{align*} y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.034

12789

\begin{align*} y^{\prime \prime \prime \prime }+\left (a \,x^{2}+b \lambda +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.039

12790

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right )&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.149

12791

\begin{align*} a^{4} x^{4} y+4 a^{3} x^{3} y^{\prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a x y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.045

12792

\begin{align*} 4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right )&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.116

12793

\begin{align*} x y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-24&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.161

12794

\begin{align*} x y^{\prime \prime \prime \prime }-\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

12795

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.037

12796

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2}&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.037

12797

\begin{align*} 2 y^{\prime \prime }+4 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.075

12798

\begin{align*} 6 y^{\prime \prime }+6 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.197

12799

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.036

12800

\begin{align*} 12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.210