2.2.126 Problems 12501 to 12600

Table 2.265: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

12501

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.579

12502

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.895

12503

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -l y&=0 \\ \end{align*}

[_Gegenbauer]

68.530

12504

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

89.920

12505

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x -\left (v +2\right ) \left (v -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

816.631

12506

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-\left (1+3 x \right ) y^{\prime }-\left (x^{2}-x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.348

12507

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.343

12508

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (v +n +1\right ) \left (v -n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

54.962

12509

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (v -n +1\right ) \left (v +n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

54.852

12510

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.694

12511

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 a x y^{\prime }+a \left (a -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

0.526

12512

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

48.577

12513

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

132.700

12514

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.282

12515

\begin{align*} x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

12516

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.896

12517

\begin{align*} y+\left (3 x +2\right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.548

12518

\begin{align*} \left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

12519

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.697

12520

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

[_Jacobi]

69.780

12521

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.696

12522

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[_Jacobi]

86.866

12523

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime }-l y&=0 \\ \end{align*}

[_Jacobi]

102.675

12524

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.648

12525

\begin{align*} x \left (2+x \right ) y^{\prime \prime }+2 \left (n +1+\left (n +1-2 l \right ) x -l \,x^{2}\right ) y^{\prime }+\left (2 l \left (p -n -1\right ) x +2 p l +m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

164.049

12526

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.475

12527

\begin{align*} x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13.464

12528

\begin{align*} -\left (2 x +3\right ) y+\left (x^{2}+x +1\right ) y^{\prime }+\left (x^{2}+3 x +4\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.423

12529

\begin{align*} \left (x -1\right ) \left (x -2\right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

474.982

12530

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.503

12531

\begin{align*} 2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.770

12532

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[_Jacobi]

71.237

12533

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y&=0 \\ \end{align*}

[_Jacobi]

70.156

12534

\begin{align*} \left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.424

12535

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.167

12536

\begin{align*} \left (4 a^{2} x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.212

12537

\begin{align*} 4 x^{2} y^{\prime \prime }-\left (-4 k x +4 m^{2}+x^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.256

12538

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-v^{2}+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.195

12539

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2 \left (1-m +2 l \right ) x -m^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.083

12540

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.677

12541

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

12542

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.363

12543

\begin{align*} 4 x^{2} y^{\prime \prime }+5 y^{\prime } x -y-\ln \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.355

12544

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (4 x^{2}+12 x +3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.254

12545

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

12546

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.217

12547

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (\ln \left (x \right )^{2} x^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

12548

\begin{align*} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.784

12549

\begin{align*} x \left (4 x -1\right ) y^{\prime \prime }+\left (\left (4 a +2\right ) x -a \right ) y^{\prime }+a \left (a -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

69.241

12550

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.117

12551

\begin{align*} 9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y&=0 \\ \end{align*}

[_Jacobi]

0.290

12552

\begin{align*} \left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.220

12553

\begin{align*} -\left (5+4 x \right ) y+32 y^{\prime } x +16 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.263

12554

\begin{align*} \left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.809

12555

\begin{align*} 48 x \left (x -1\right ) y^{\prime \prime }+\left (152 x -40\right ) y^{\prime }+53 y&=0 \\ \end{align*}

[_Jacobi]

61.806

12556

\begin{align*} 50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.517

12557

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (120 x -48\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

61.770

12558

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (168 x -96\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

32.508

12559

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+\left (c \,x^{2}+d x +f \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.106

12560

\begin{align*} \operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.794

12561

\begin{align*} \left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

174.399

12562

\begin{align*} \left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.697

12563

\begin{align*} \left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y&=0 \\ \end{align*}

[_Gegenbauer]

0.652

12564

\begin{align*} \left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.664

12565

\begin{align*} \operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

96.482

12566

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

153.312

12567

\begin{align*} x^{3} y^{\prime \prime }+y^{\prime } x -\left (2 x +3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.256

12568

\begin{align*} -y+2 y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

25.033

12569

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.273

12570

\begin{align*} x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.303

12571

\begin{align*} x^{3} y^{\prime \prime }-x^{2} y^{\prime }+y x -\ln \left (x \right )^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.229

12572

\begin{align*} x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

43.362

12573

\begin{align*} x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+y x -1&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.143

12574

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

126.199

12575

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.487

12576

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

151.565

12577

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

151.863

12578

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.115

12579

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_elliptic, _class_II]]

249.064

12580

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[[_elliptic, _class_I]]

77.762

12581

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

125.212

12582

\begin{align*} -6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.691

12583

\begin{align*} x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.542

12584

\begin{align*} \left (2 x +1\right ) y-x \left (2 x +1\right ) y^{\prime }+x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

12585

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.366

12586

\begin{align*} y^{\prime \prime }&=-\frac {2 \left (x -2\right ) y^{\prime }}{x \left (x -1\right )}+\frac {2 \left (x +1\right ) y}{x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.404

12587

\begin{align*} y^{\prime \prime }&=\frac {\left (5 x -4\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.455

12588

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

145.611

12589

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.247

12590

\begin{align*} y^{\prime \prime }&=\frac {2 y^{\prime }}{x \left (x -2\right )}-\frac {y}{x^{2} \left (x -2\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

141.892

12591

\begin{align*} y^{\prime \prime }&=\frac {2 y}{x \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.210

12592

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (x -1\right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (x -1\right ) \left (x -a \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

385.834

12593

\begin{align*} y^{\prime \prime }&=-\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (-b +x \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (-b +x \right ) \left (x -c \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

380.142

12594

\begin{align*} y^{\prime \prime }&=\frac {\left (x -4\right ) y^{\prime }}{2 x \left (x -2\right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (x -2\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

12595

\begin{align*} y^{\prime \prime }&=\frac {y^{\prime }}{x +1}-\frac {\left (1+3 x \right ) y}{4 x^{2} \left (x +1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

12596

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.033

12597

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (a +1\right ) x -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

72.224

12598

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.888

12599

\begin{align*} y^{\prime \prime }&=-\frac {\left (1-3 x \right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

12600

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.597