6.2.12 4.5
6.2.12.1 [607] problem number 1
problem number 607
Added January 10, 2019.
Problem 2.4.5.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a \sinh (\lambda x) \cosh (\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y], x] + a*Sinh[lambda*x]*Cosh[mu*y]*D[w[x, y], y] == 0;
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {2 a \cosh (\lambda x)}{\lambda }-\frac {2 \cot ^{-1}(\sinh (\mu y))}{\mu }\right )\right \}\right \}\]
Maple ✓
restart;
pde := diff(w(x,y),x)+a*sinh(lambda*x)*cosh(mu*y)*diff(w(x,y),y) = 0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = f_{1} \left (\frac {-\cosh \left (\lambda x \right ) a \mu +2 \arctan \left ({\mathrm e}^{\mu y}\right ) \lambda }{\lambda a \mu }\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.2.12.2 [608] problem number 2
problem number 608
Added January 10, 2019.
Problem 2.4.5.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a \cosh (\lambda x) \sinh (\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y], x] + a*Cosh[lambda*x]*Sinh[mu*y]*D[w[x, y], y] == 0;
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {2 a \sinh (\lambda x)}{\lambda }-\frac {2 \text {arctanh}(\cosh (\mu y))}{\mu }\right )\right \}\right \}\]
Maple ✓
restart;
pde := diff(w(x,y),x)+a*cosh(lambda*x)*sinh(mu*y)*diff(w(x,y),y) = 0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = f_{1} \left (\frac {-\sinh \left (\lambda x \right ) a \mu -2 \,\operatorname {arctanh}\left ({\mathrm e}^{\mu y}\right ) \lambda }{\lambda a \mu }\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.2.12.3 [609] problem number 3
problem number 609
Added January 10, 2019.
Problem 2.4.5.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2 -2 \lambda ^2 \tanh ^2(\lambda x) - 2 \lambda ^2 \coth ^2(\lambda x) \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y], x] + (y^2 - 2*lambda^2*Tanh[lambda*x]^2 - 2*lambda^2*Coth[lambda*x]^2)*D[w[x, y], y] == 0;
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {e^{-4 \lambda x} \left (16 \lambda ^2 x e^{4 \lambda x} \left (e^{4 \lambda x}+1\right )+y \left (e^{4 \lambda x}+1\right ) \left (e^{4 \lambda x}-1\right )^2+2 \lambda \left (e^{4 \lambda x}-1\right ) \left (-2 e^{4 \lambda x} (2 x y+3)+e^{8 \lambda x}+1\right )\right )}{-y e^{4 \lambda x}+2 \lambda \left (e^{4 \lambda x}+1\right )+y}\right )\right \}\right \}\]
Maple ✓
restart;
pde := diff(w(x,y),x)+(y^2 -2 *lambda^2*tanh(lambda*x)^2 - 2*lambda^2*coth(lambda*x)^2)*diff(w(x,y),y) = 0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = f_{1} \left (\frac {2 \cosh \left (\lambda x \right )^{2} \lambda -y \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )-\lambda }{\left (-2 \cosh \left (\lambda x \right )^{2} \lambda +y \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )+\lambda \right ) \ln \left (\coth \left (\lambda x \right )-1\right )+\left (2 \cosh \left (\lambda x \right )^{2} \lambda -y \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )-\lambda \right ) \ln \left (\coth \left (\lambda x \right )+1\right )+4 \sinh \left (\lambda x \right ) \left (y \cosh \left (\lambda x \right )^{3} \sinh \left (\lambda x \right )+2 \lambda \cosh \left (\lambda x \right )^{4}-\frac {y \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )}{2}-2 \cosh \left (\lambda x \right )^{2} \lambda -\frac {\lambda }{2}\right ) \cosh \left (\lambda x \right )}\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.2.12.4 [610] problem number 4
problem number 610
Added January 10, 2019.
Problem 2.4.5.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2 +\lambda (a+b)-2 a b -a(a+\lambda ) \tanh ^2(\lambda x) - b(b+\lambda ) \coth ^2(\lambda x) \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y], x] + (y^2 + lambda*(a + b) - 2*a*b - a*(a + lambda)*Tanh[lambda*x]^2 - b*(b + lambda)*Coth[lambda*x]^2)*D[w[x, y], y] == 0;
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\lambda e^{-2 x (a+b)} \left ((a+b-\lambda ) \operatorname {AppellF1}\left (-\frac {a+b}{\lambda },-\frac {2 b}{\lambda },-\frac {2 a}{\lambda },-\frac {a+b-\lambda }{\lambda },e^{2 \lambda x},-e^{2 \lambda x}\right ) \left (a \left (-2 e^{2 \lambda x}+3 e^{4 \lambda x}-1\right )+\left (e^{2 \lambda x}+1\right ) \left (b \left (3 e^{2 \lambda x}-1\right )-y e^{2 \lambda x}+y\right )\right )+4 b (a+b) e^{2 \lambda x} \left (e^{4 \lambda x}-1\right ) \operatorname {AppellF1}\left (1-\frac {a+b}{\lambda },1-\frac {2 b}{\lambda },-\frac {2 a}{\lambda },-\frac {a+b-2 \lambda }{\lambda },e^{2 \lambda x},-e^{2 \lambda x}\right )-4 a (a+b) e^{2 \lambda x} \left (e^{4 \lambda x}-1\right ) \operatorname {AppellF1}\left (1-\frac {a+b}{\lambda },-\frac {2 b}{\lambda },1-\frac {2 a}{\lambda },-\frac {a+b-2 \lambda }{\lambda },e^{2 \lambda x},-e^{2 \lambda x}\right )\right )}{(a+b) (a+b-\lambda ) \left (a \left (e^{2 \lambda x}-1\right )^2+\left (e^{2 \lambda x}+1\right ) \left (b e^{2 \lambda x}+b-y e^{2 \lambda x}+y\right )\right )}\right )\right \}\right \}\]
Maple ✓
restart;
pde := diff(w(x,y),x)+(y^2 +lambda*(a+b)-2*a*b -a*(a+lambda)*tanh(lambda*x)^2 - b*(b+lambda)*coth(lambda*x)^2)*diff(w(x,y),y) = 0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = f_{1} \left (\frac {\left (-\operatorname {csch}\left (\lambda x \right )^{2}\right )^{\frac {a +b}{\lambda }} \left (-\sinh \left (\lambda x \right ) y \cosh \left (\lambda x \right )+a \sinh \left (\lambda x \right )^{2}+b \cosh \left (\lambda x \right )^{2}\right ) \left (a +\frac {3 \lambda }{2}\right ) \coth \left (\lambda x \right )^{\frac {-2 a -\lambda }{\lambda }} \sinh \left (\lambda x \right )^{2}}{2 \cosh \left (\lambda x \right )^{2} \left (b -\frac {\lambda }{2}\right ) \lambda \operatorname {hypergeom}\left (\left [2, -\frac {2 b -3 \lambda }{2 \lambda }\right ], \left [\frac {2 a +5 \lambda }{2 \lambda }\right ], \coth \left (\lambda x \right )^{2}\right )+\operatorname {hypergeom}\left (\left [1, \frac {-2 b +\lambda }{2 \lambda }\right ], \left [\frac {2 a +3 \lambda }{2 \lambda }\right ], \coth \left (\lambda x \right )^{2}\right ) \left (a^{2} \sinh \left (\lambda x \right )^{2}+y \cosh \left (\lambda x \right ) \left (a +\frac {3 \lambda }{2}\right ) \sinh \left (\lambda x \right )+\left (\frac {3 \lambda \left (a +b \right )}{2}+a b \right ) \cosh \left (\lambda x \right )^{2}-\frac {5 \left (a +\frac {3 \lambda }{5}\right ) \lambda }{2}\right ) \sinh \left (\lambda x \right )^{2}}\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.2.12.5 [611] problem number 5
problem number 611
Added January 10, 2019.
Problem 2.4.5.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ \sinh (\lambda y) w_x + a \cosh (\beta x) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"];
pde = Sinh[lambda*y]*D[w[x, y], x] + a*Cosh[beta*x]*D[w[x, y], y] == 0;
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\cosh (\lambda y)}{\lambda }-\frac {a \sinh (\beta x)}{\beta }\right )\right \}\right \}\]
Maple ✓
restart;
pde := sinh(lambda*y)*diff(w(x,y),x)+a*cosh(beta*x)*diff(w(x,y),y) = 0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = f_{1} \left (\frac {-\sinh \left (\beta x \right ) a \lambda +\cosh \left (\lambda y \right ) \beta }{\beta a \lambda }\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.2.12.6 [612] problem number 6
problem number 612
Added January 10, 2019.
Problem 2.4.5.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ \left ( a x^n \cosh ^m(\lambda y)+ b x \right ) w_x + \sinh ^k(\beta y) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"];
pde = (a*x^n*Cosh[lambda*y]^m + b*x)*D[w[x, y], x] + Sinh[beta*y]^k*D[w[x, y], y] == 0;
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart;
pde := (a*x^n*cosh(lambda*y)^m+b*x)*diff(w(x,y),x)+sinh(beta*y)^k*diff(w(x,y),y) = 0;
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = f_{1} \left (a \left (n -1\right ) \int \cosh \left (\lambda y \right )^{m} \sinh \left (\beta y \right )^{-k} {\mathrm e}^{b \int \sinh \left (\beta y \right )^{-k}d y \left (n -1\right )}d y +x^{-n +1} {\mathrm e}^{b \int \sinh \left (\beta y \right )^{-k}d y \left (n -1\right )}\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________