6.2.13 5.1

6.2.13.1 [613] problem number 1
6.2.13.2 [614] problem number 3
6.2.13.3 [615] problem number 4

6.2.13.1 [613] problem number 1

problem number 613

Added January 14, 2019.

Problem 2.5.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( a \ln ^k(\lambda x)+ b\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*Log[lambda*x]^k + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {a \log ^k(\lambda x) (-\log (\lambda x))^{-k} \Gamma (k+1,-\log (\lambda x))}{\lambda }-b x+y\right )\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x)+(a*ln(lambda*x)^k+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-b x +y -a \int \ln \left (\lambda x \right )^{k}d x \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.2.13.2 [614] problem number 3

problem number 614

Added January 14, 2019.

Problem 2.5.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( a \ln ^k(\lambda y)+ b\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*Log[lambda*y]^k + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\int _1^y\frac {1}{a \log ^k(\lambda K[1])+b}dK[1]-x\right )\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x)+(a*ln(lambda*y)^k+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\int \frac {1}{a \ln \left (\lambda y \right )^{k}+b}d y +x \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.2.13.3 [615] problem number 4

problem number 615

Added January 14, 2019.

Problem 2.5.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( a \ln ^k(x+\lambda y)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*Log[x + lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \int _1^y\left (-\frac {\lambda c_1}{a \lambda \log ^k(x+\lambda K[6338])+1}-\int _1^x\frac {a k \lambda ^2 c_1 \log ^{k-1}(K[1]+\lambda K[6338])}{(K[1]+\lambda K[6338]) \left (a \lambda \log ^k(K[1]+\lambda K[6338])+1\right )^2}dK[1]\right )dK[6338]+\int _1^x\frac {a \lambda c_1 \log ^k(\lambda y+K[1])}{a \lambda \log ^k(\lambda y+K[1])+1}dK[1]+c_2\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x)+a*ln(x+lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\int _{}^{\frac {\lambda y +x}{\lambda }}\frac {1}{1+a \ln \left (\textit {\_a} \lambda \right )^{k} \lambda }d \textit {\_a} \lambda +x \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________