6.2.11 4.4

6.2.11.1 [603] problem number 1
6.2.11.2 [604] problem number 2
6.2.11.3 [605] problem number 3
6.2.11.4 [606] problem number 4

6.2.11.1 [603] problem number 1

problem number 603

Added January 10, 2019.

Problem 2.4.4.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a \coth (\lambda x) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*Coth[lambda*x]*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {a \log (\sinh (\lambda x))}{\lambda }\right )\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x)+a*coth(lambda*x)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {y \lambda -a \ln \left (\sinh \left (\lambda x \right )\right )}{\lambda }\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.2.11.2 [604] problem number 2

problem number 604

Added January 10, 2019.

Problem 2.4.4.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a \coth (\lambda y) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*Coth[lambda*y]*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\log (\cosh (\lambda y))}{\lambda }-a x\right )\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x)+a*coth(lambda*y)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {x a \lambda -\ln \left (\cosh \left (\lambda y \right )\right )}{a \lambda }\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.2.11.3 [605] problem number 3

problem number 605

Added January 10, 2019.

Problem 2.4.4.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (y^2 + a \lambda - a(a+\lambda ) \coth ^2(\lambda x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + a*lambda - a*(a + lambda)*Coth[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\lambda e^{-2 a x} \left (\frac {\operatorname {Hypergeometric2F1}\left (-\frac {2 a}{\lambda },-\frac {a}{\lambda },1-\frac {a}{\lambda },e^{2 \lambda x}\right )}{a}-\frac {2 \left (1-e^{2 \lambda x}\right )^{\frac {2 a}{\lambda }+1}}{a e^{2 \lambda x}+a-y e^{2 \lambda x}+y}\right )\right )\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x)+(y^2 + a*lambda - a*(a+lambda)*coth(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {\operatorname {LegendreP}\left (\frac {a +\lambda }{\lambda }, \frac {a}{\lambda }, \coth \left (\lambda x \right )\right ) \lambda -\operatorname {LegendreP}\left (\frac {a}{\lambda }, \frac {a}{\lambda }, \coth \left (\lambda x \right )\right ) \left (\left (a +\lambda \right ) \coth \left (\lambda x \right )+y \right )}{-\lambda \operatorname {LegendreQ}\left (\frac {a +\lambda }{\lambda }, \frac {a}{\lambda }, \coth \left (\lambda x \right )\right )+\operatorname {LegendreQ}\left (\frac {a}{\lambda }, \frac {a}{\lambda }, \coth \left (\lambda x \right )\right ) \left (\left (a +\lambda \right ) \coth \left (\lambda x \right )+y \right )}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.2.11.4 [606] problem number 4

problem number 606

Added January 10, 2019.

Problem 2.4.4.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left (y^2 + 3 a \lambda -\lambda ^2 - a(a+\lambda ) \coth ^2(\lambda x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + 3*a*lambda - lambda^2 - a*(a + lambda)*Coth[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(y^2 + a*lambda  -lambda^2 - a*(a+lambda)*coth(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {\left (-a +\sqrt {a^{2}+\lambda ^{2}}-\lambda \right ) \operatorname {LegendreP}\left (\frac {a +\lambda }{\lambda }, \frac {\sqrt {a^{2}+\lambda ^{2}}}{\lambda }, \coth \left (\lambda x \right )\right )+\operatorname {LegendreP}\left (\frac {a}{\lambda }, \frac {\sqrt {a^{2}+\lambda ^{2}}}{\lambda }, \coth \left (\lambda x \right )\right ) \left (\left (a +\lambda \right ) \coth \left (\lambda x \right )+y \right )}{\left (a +\lambda -\sqrt {a^{2}+\lambda ^{2}}\right ) \operatorname {LegendreQ}\left (\frac {a +\lambda }{\lambda }, \frac {\sqrt {a^{2}+\lambda ^{2}}}{\lambda }, \coth \left (\lambda x \right )\right )-\left (\left (a +\lambda \right ) \coth \left (\lambda x \right )+y \right ) \operatorname {LegendreQ}\left (\frac {a}{\lambda }, \frac {\sqrt {a^{2}+\lambda ^{2}}}{\lambda }, \coth \left (\lambda x \right )\right )}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________