Internal
problem
ID
[7694]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
130
Problem
number
:
4
Date
solved
:
Sunday, March 30, 2025 at 12:19:06 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(y(x),x),x)+exp(x)*y(x) = 0; ic:=y(0) = 1, D(y)(0) = 0; dsolve([ode,ic],y(x),type='series',x=0);
ode=D[y[x],{x,2}]+Exp[x]*y[x]==0; ic={y[0]==1,Derivative[1][y][0] == 0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)*exp(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)