49.15.7 problem 3

Internal problem ID [7693]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 130
Problem number : 3
Date solved : Sunday, March 30, 2025 at 12:19:04 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
Order:=6; 
ode:=(x^2+1)*diff(diff(y(x),x),x)+y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 1; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = x -\frac {1}{6} x^{3}+\frac {7}{120} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 19
ode=(1+x^2)*D[y[x],{x,2}]+y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {7 x^5}{120}-\frac {x^3}{6}+x \]
Sympy. Time used: 0.790 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{8} - \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (1 - \frac {x^{2}}{6}\right ) + O\left (x^{6}\right ) \]