Internal
problem
ID
[7693]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
130
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 12:19:04 PM
CAS
classification
:
[[_Emden, _Fowler]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(x^2+1)*diff(diff(y(x),x),x)+y(x) = 0; ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(x),type='series',x=0);
ode=(1+x^2)*D[y[x],{x,2}]+y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) + y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)