Internal
problem
ID
[7695]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
130
Problem
number
:
5
Date
solved
:
Sunday, March 30, 2025 at 12:19:07 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-x*y(x) = 0; ic:=y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,3}]-x*y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + Derivative(y(x), (x, 3)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve -x*y(x) + Derivative(y(x), (x, 3))