Internal
problem
ID
[7529]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.34
Date
solved
:
Sunday, March 30, 2025 at 12:13:45 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(t),t),t),t)-3*diff(diff(y(t),t),t)+3*diff(y(t),t)-y(t) = 4*exp(t); dsolve(ode,y(t), singsol=all);
ode=D[ y[t],{t,3}]-3*D[y[t],{t,2}]+3*D[y[t],t]-y[t]==4*Exp[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t) - 4*exp(t) + 3*Derivative(y(t), t) - 3*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0) ics = {} dsolve(ode,func=y(t),ics=ics)