Internal
problem
ID
[7530]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.35
Date
solved
:
Sunday, March 30, 2025 at 12:13:47 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(t),t),t),t),t)+2*diff(diff(y(t),t),t)+y(t) = 3*sin(t)-5*cos(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,4}]+2*D[y[t],{t,2}]+y[t]==3*Sin[t]-5*Cos[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 3*sin(t) + 5*cos(t) + 2*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 4)),0) ics = {} dsolve(ode,func=y(t),ics=ics)