Internal
problem
ID
[7528]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.33
Date
solved
:
Sunday, March 30, 2025 at 12:13:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=x^2*y(x)*diff(diff(y(x),x),x) = x^2*diff(y(x),x)^2-y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*y[x]*D[y[x],{x,2}]==x^2*(D[y[x],x])^2-y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x)*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), x)**2 + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - sqrt((x**2*Derivative(y(x), (x, 2)) + y(x))*y(x))/x cannot be solved by the factorable group method