Internal
problem
ID
[7527]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.32
Date
solved
:
Sunday, March 30, 2025 at 12:13:42 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x)-x/(-x^2+1)*diff(y(x),x)+y(x)/(-x^2+1) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-x/(1-x^2)*D[y[x],x]+y[x]/(1-x^2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x)/(1 - x**2) + Derivative(y(x), (x, 2)) + y(x)/(1 - x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False